바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

터널 주변 전기비저항 토모그래피 모니터링 자료의 시간경과 역산

Time-lapse inversion of resistivity tomography monitoring data around a tunnel

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2009, v.11 no.4, pp.361-371
조인기 (강원대학교)
정재형 (한국건설기술연구원)
배규진 (한국건설기술연구원)

초록

전기비저항 토모그래피법은 터널 주변의 물성분포나 그 변화를 탐지하는데 매우 효과적인 물리탐사 방법이다. 따라서 전기비저항 토모그래피 영상은 터널의 효과적인 유지관리를 위한 중요한 정보를 제공해 준다. 그러나 공기로 채워진 터널은 토모그래피 자료를 심하게 왜곡시키며, 이러한 현상은 송, 수신점이 터널에 근접할수록 심화된다. 또한 이러한 왜곡은 결과적으로 토모그래피 모니터링 자료의 해석에 오류를 가져오게 된다. 이런 문제점의 해결을 위하여 터널을 포함한 모델링 및 시간경과 역산법을 개발하였다. 개발된 프로그램을 사용하여 터널을 고려한 역산법이 기존의 역산법에 비하여 월등히 정밀한 영상을 제공함을 확인하였다. 또한 모니터링 자료에 시간경과 역산을 사용하여 보다 효과적으로 터널주변의 시간에 따른 전기비저항 변화대를 파악할 수 있었다.

keywords
Resistivity tomography, tunnel, time-lapse inversion, monitoring, 전기비저항 토모그래피, 터널, 시간경과역산, 모니터링

Abstract

Resistivity tomography is very effective geophysical method to find out the resistivity distribution and its change in time around a tunnel. Thus, the resistivity tomogram can provide helpful information which is necessary for the effective maintenance of the tunnel. However, an air filled tunnel severely distorts tomography data, especially when the current or potential electrode is placed near the tunnel. Moreover, the distortion can often lead to misinterpretation of tomography monitoring data. To solve these problem, we developed a resistivity modeling and time-lapse inversion program which include a tunnel. In this study, using the developed program we assured that the inversion including a tunnel gives much more accurate image around a tunnel, compared with the conventional tomogram where the tunnel is not included. We also confirmed that the time-lapse inversion of resistivity monitoring data defines well resistivity changed areas around a tunnel in time.

keywords
Resistivity tomography, tunnel, time-lapse inversion, monitoring, 전기비저항 토모그래피, 터널, 시간경과역산, 모니터링

참고문헌

1.

1. 김성환, 김낙영 (2000), “고속도로 터널현황”, 터널기술,2, pp. 6-14.

2.

2. 김정호, 이명종 (2006), “시간에 대해 변화하는 지하구조에서 획득한 물리탐사 자료의 역산”, 대한지구물리학회,한국물리탐사학회 공동학술대회 논문집, pp. 188-193.

3.

3. 김정호, 이명종, 조성준, 송윤호, 정승환 (1997), “전기비저항 토모그래피와 시추공 레이다 탐사의 원리 및 응용”, 건설현장에 필요한 물리탐사기술 심포지움, 제2회학술발표회 논문집, 한국지구물리탐사학회, pp. 92-116.

4.

4. 김정호, 정승환, 송윤호, 조성준, 이명종, 신인철, 이영남, 정연문, 하희상 (1999), “전기비저항 토모그래피 영상법 및 토목/환경분야 적용성 연구”, 현대건설(주) 기술연구소, 96GE011.

5.

5. 김정호, 이명종, 조성준, 정승환, 이희일 (1996), “시추공 효과가 전기비저항 토모그래피에 미치는 영향에 관한연구”, 한국자원연구소 연구보고서, KR-96(C)-10, pp. 3-60.

6.

6. 신종호, 신용석, 윤종열, 김호종 (2008), “전기비저항탐사를 이용한 터널라이닝 누수조사연구”, 한국터널공학회지, 10, pp. 257-267.

7.

7. 안희윤, 정재형, 조인기, 김정호, 배규진 (2008), “터널굴착에 따른 전기비저항 모니터링 기술 적용”, 한국터널공학회지, 10, pp. 1-16.

8.

8. 이명종, 현병구, 김정호 (1995), “시추공간 전기비저항탐사자료의 영상화”, 한국자원공학회지, 32, pp. 87-96.

9.

9. 정승환, 김융태, 안대영 (1995), “전기비저항 토모그래피에 의한 지하영상화 및 적용사례”, 한국자원공학회특별심포지움 논문집, 지반사고 예방을 위한 물리탐사의 활용, pp. 133-140.

10.

10. 조인기, 정승환, 김정호, 송윤호 (1997a), “전기비저항토모그래피에서의 전극배열 비교”, 한국자원공학회지,34, pp. 18-26.

11.

11. 조인기, 김정호, 정승환 (1997b), “전기비저항 토모그래피에서의 공내수의 영향”, 한국자원공학회지, 34, pp.531-538.

12.

12. Beasley, C. W. and Ward, S. H. (1988), Cross-borehole resistivity inversion, 58th Ann. Internat. Mtg., Soc. Expl.Geophys., Expanded Abstracts, pp. 204-207.

13.

13. Coggon, J. H. (1971), “Electromagnetic and electric modeling by finite element method”, Geophysics, 36, pp. 132-155.

14.

14. Daily, A. and Owen, E. (1991), “Cross-borehole resistivity tomography”, Geophysics, 44, pp. 753-780.

15.

15. Day-Lewis, F. D., Harris, J. M. and Gorelick, S. M. (2002),“Time-lapse inversion of crosswell radar data”, Geophysics,66, pp. 1740-1752.

16.

16. Dey, A. and Morrison, H.F. (1979), “Resistivity modeling for arbitrarily shaped two-dimensional structures”, Geophysical Prospecting, 27, pp. 106-136.

17.

17. Hohmann, G. W. (1975), “Three-dimensional induced polarization and electromagnetic modeling”, Geophysics,40, pp. 309-324.

18.

18. Kim, J. H. (2006), “Least-squares inversion of DC resistivity data acquired over dynamically changing earth model”,Proceedings of Near Surface 2006, the 12'th European meeting of Environmental and Engineering Geophysics,European Association of Geoscientists and Engineers, 4-6 Sep., Helsinki, Finland, B030.

19.

19. LaBrecque, D. J. and Yang, X. (2001), “Difference inversion of ERT data, A fast inversion method for 3-D in-situ monitoring”, Journal of Environmental and Engineering Geophysics, 6, pp. 83-89.

20.

20. Loke, M. H. (1999), “Time-lapse resistivity imaging inversions”,Environmental and Engineering Geophysical Society European Section, Meeting, Proceedings, Em1.

21.

21. Pridmore, D. F., Hohmann, G. W., Ward, S. H. and Sill, W.R. (1981), “An investigation on finite element modeling for electrical and electromagnetic data in three dimensions”,Geophysics, 46, pp. 1009-1024

22.

22. Ohtomo, H., Saito, H., Shima, H. and Toshioka, T. (1990),“Application of geotomography to Civil Engineering”, The1st SEGJ International Symposium on Geotomography, v.1,Soc. Expl. Geophys. Japan, pp. 77-88.

23.

23. Shima, H. (1992), “2-D and 3_D resistivity image reconstruction using crosshole data”, Geophysics, 57, pp. 1270-1281.

24.

24. Sasaki, Y. (1992), “Resolution of resistivity tomography inferred from numerical simulation”, Geophysical Prospecting, 40,pp. 453-463.

25.

25. Sasaki, Y. and Matsuo, K. (1990), “Surface-to-tunnel resistivity tomography at copper mine”, 60th Ann. Internat. Mtg.,Soc. Expl. Geophys., Expanded Abstracts, pp. 550-553.

26.

26. Slater, L., Binley, A. M. Daily, W., and Johnson, R. (2000),“Cross-hole electrical imaging of a controlled saline tracer injection”, Journal of Applied Geophysics, 44, pp. 85-102.

27.

27. Yi, M. J. Kim, J. H., and Chung, S. H. (1997), “The borehole effect in imaging the earth using resistivity tomography”,59th EAEG conference & Technical Exhibition, Expanded Abstracts, PO79.

28.

28. Yi. M. J., Kim, J. H. and Chung, S. H. (2003), “Enhancing the resolving power in least-squares inversion with active constraint balancing”, Geophysics, 68, pp. 931-941.

(사)한국터널지하공간학회