바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

양승훈(한양대학교 건설환경시스템공학과) ; 곽동엽(한양대학교) pp.187-200 https://doi.org/10.9711/KTAJ.2023.25.3.187
초록보기
초록

본 연구에서는 주변 환경에 따른 굴착식 터널의 지진취약도 변화에 대한 분석을 진행하고 대표 지진취약도 모델을 제시하였다. 기 개발된 굴착식 터널의 지진취약도 모델들에 대한 분석을 진행한 후 각 모델들에 가중치를 부여하여 주변 환경에 맞게 새로 가중조합한 모델을 개발하였다. 주변 환경은 굴착식 터널 주변의 지반조건과 매설 깊이를 고려하였다. 지진취약도 곡선의 피해 발생 확률은 최대지반가속도(PGA)를 매개변수로 하여 결정된다. PGA가 0.3 g일 때 매설 깊이가 50 m이하의 조건에서는 경미한 손상을 초과하는 피해 확률이 20%, 매설 깊이가 50 m 이상 100 m 이하의 조건에서는 피해 확률이 10%, 매설 깊이 100 m 이상의 조건에서는 피해 확률이 3% 이하로 매설 깊이에 따라 피해 확률이 점차 낮아지는 것을 확인하였다. 또한 주변 지반이 토양으로 되어있을 때보다 암반으로 되어있을 때 동일한 지표의 PGA에 대해 같은 매설 깊이에서 피해 확률이 크게 나타나며, 매설 깊이가 깊어질수록 피해 확률이 작아진다. 이 연구는 향후 터널의 종합적 지진취약도 함수 개발에 유용하게 사용될 것으로 기대된다.

Abstract

This study analyzed the seismic fragility of bored tunnels based on their surrounding conditions and suggested a representative seismic fragility model. By analyzing the existed seismic fragility models developed for bored tunnels, we developed weighted combination models for each surrounding conditions, such as ground conditions and depth of the tunnel. The seismic fragility curves use the peak ground acceleration(PGA) as a parameter. When the PGA was 0.3 g, the probability of damage exceeding minor or slight damage was 20% for depth of 50 m or less, 10% for depth between 50m and 100 m, and 3% for depth of 100 m or more. It was also found that the probability of damage was higher for the same PGA and depth when the surrounding ground was rock rather than soil. The probability of damage decreases as the depth increase. This study is expected to be used for developing a comprehensive seismic fragility function for tunnels in the future.

김정주(한양대학교(ERICA캠퍼스) 공학기술연구소) ; 이지윤(한전 전력연구원 송변전연구소) ; 류희환(한전 전력연구원 송변전연구소) ; 정주환(한전 전력연구원 차세대송변전연구소) ; 이석재(한전 전력연구원 송변전연구소) ; 배두산(한국전력공사) pp.201-220 https://doi.org/10.9711/KTAJ.2023.25.3.201
초록보기
초록

터널식 전력구는 지중으로 전력을 공급하기 위한 구조물 중 하나이며, 도심지 및 해저구간을 통과하는 구간에 쉴드TBM 공법을 활용하여 안정적으로 건설을 추진한다. 전력구 건설의 경우에는 수직구 심도가 깊어 주로 암반지반을 굴착하며, 암반대상 밀폐형 쉴드TBM 선정에 대한 고찰이 필요하였다. 또한, 지반조사 보고서 결과를 바탕으로 범용적이고, 간단한 설계방법이 필요하였다. 이에 실대형 굴진시험, 누적 굴진데이터, 수치해석을 종합하여 쉴드TBM 설계방법과 관련 프로그램을 개발하였다. 프로그램 결과에 대해 검증을 수행하고자 준공된 전력구 1개 현장의 굴진데이터를 활용하였다. 굴진데이터의 모집단을 추정하기 위해 커널밀도추정 방법을 도입하여 추력, 토크, 동력의 기본사양에 대해 검증을 완료하였다. 본 연구결과를 통해 쉴드TBM 설계업무 전문성 강화 및 안정적 전력공급의 사용자 편익증대를 기대할 수 있다.

Abstract

Power cable tunnels is one of the underground structures meant for electricity transmission and are constructed using shield TBM method when transitting across urban and subsea regions. With the increasing shaft depth for tunnels excavation when the shield TBM excavated the rock mass, the review of selecting closed-type shield TBM in rocks becomes necessary. A simplified shield TBM design method is also necessary based on conventional geotechnical survey results. In this respect, design method and related design program are developed based on combined results of full-scale tests, considerable amount of accumulated TBM data, and numerical simulation results. In order to validate the program results, excavation data of a completed power cable tunnel project are utilized. Thrust force, torque, and power of shield TBM specification are validated using Kernel density concept which estimates the population data. The robustness of design expertise is established through this research which will help in stable provision of electricity supply.

정재훈(현대건설) ; 임주휘(현대건설) ; 이재원(현대건설) ; 강한별(현대건설(주)) ; 김도훈(현대건설) ; 신영진(현대건설) pp.221-243 https://doi.org/10.9711/KTAJ.2023.25.3.221
초록보기
초록

국내 도심지 터널 공사에서 발파로 인한 진동 및 소음 방지를 위한 대안으로 로드헤더 공법 적용사례가 늘고 있다. 그러나 국내의 암반 대상 로드헤더 적용사례가 극히 적어 로드헤더 장비선정과 굴착효율 평가에 한계가 있다. 특히 로드헤더 굴착효율 평가를 위해 현재는 해외 현장에서 경험적으로 개발된 모델식을 적용하고 있으나 국내 암종 및 지질조건에 대한 검증이 부족한 실정이다. 본 연구에서는 해외 문헌 연구를 통하여 로드헤더 장비사양 결정방법과 굴착효율 평가 모델을 조사하였다. 이를 바탕으로 국내 현장 대상 장비선정을 위한 사양 검토와 더불어 현장 대상 암석강도와 굴착효율의 상관모델식을 제안하고 설계 굴착효율 예측 모델과 비교하였다. 또한 로드헤더 절삭이론 모델식을 이용한 굴착효율 산정의 간편법을 제안함으로써 굴착효율을 평가하고 기존 경험적 예측 모델과 비교 검증하였다.

Abstract

The use of roadheaders has been increasing to mitigate the problems of noise and vibration during tunneling operations in urban area. Since lack of experience of roadheader for hard rock, the selection of appropriate machines and the evaluation of cutting rates have been challenging. Currently, empirical models developed overseas are commonly used to evaluate cutting rates, but their effectiveness has not been verified for domestic rocks. In this paper, a comprehensive literature review was conducted to assess the rock cutting force, cutterhead capacity, and cutting rate to select the appropriate machine and evaluate its performance. The cutterhead capacity was reviewed based on the literature results for the site. Furthermore, a new empirical model and simplified method for predicting cutting rates were proposed through data analysis in relation to operation time and rock strength, and compared with those of the conventional model from the manufacturer. The results show good agreement for high strength range upper 80 MPa of uniaxial compressive strength.

이철희(한국건설기술연구원 지반연구본부) ; 김동규(한국건설기술연구원) pp.245-259 https://doi.org/10.9711/KTAJ.2023.25.3.245
초록보기
초록

본 논문의 목적은 국내외 터널 스캐닝 시스템들을 분석하여 비접촉 이동식 상태점검 장비 개발에 대한 시사점을 도출하기 위한 것이다. 국내외 터널 스캐닝 시스템은 레이저 스캔과 이미지 스캔의 두 가지 기술로 개발되고 있다. 레이저 스캐닝 장비는 포인트 클라우드로부터 터널 라이닝의 기하하적 특성을 재현하는데 장점이 있다. 이미지 스캐닝 장비는 컴퓨터 비전을 활용하여 터널 라이닝 표면의 미세한 균열, 누수 등 손상 검출이 용이하다. 터널 라이닝의 손상 검출을 위해서는 이미지 스캐닝 장비가 더 적합할 것으로 분석되었다. 향후 개발 예정인 카메라 기반의 터널 스캐닝 시스템은 조명, 저장장치, 전원 공급 장치 및 차량 주행 속도 동기화 제어 장치로 구성되어야 할 것이다.

Abstract

The purpose of this paper is to examine the most recent tunnel scanning systems to obtain insights for the development of non-contact mobile inspection system. Tunnel scanning systems are mostly being developed by adapting two main technologies, namely laser scanning and image scanning systems. Laser scanning system has the advantage of accurately recreating the geometric characteristics of tunnel linings from point cloud. On the other hand, image scanning system employs computer vision to effortlessly identify damage, such as fine cracks and leaks on the tunnel lining surface. The analysis suggests that image scanning system is more suitable for detecting damage on tunnel linings. A camera-based tunnel scanning system under development should include components such as lighting, data storage, power supply, and image-capturing controller synchronized with vehicle speed.

(사)한국터널지하공간학회