바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

대심도 지하공동에 발생하는 암반의 팽창 및 스폴링 현상 모델링

Modeling of rock dilation and spalling in an underground opening at depth

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2010, v.12 no.1, pp.31-41
이용주 (서울과학기술대학교)
조남각 ((주)서영엔지니어링)
  • 다운로드 수
  • 조회수

초록

본 연구에서는 실험 및 수치해석적인 접근방법을 통하여 대심도 과지압 구간에서 발생하는 암반의 스폴링(spalling) 및 팽창모드에 대한 모델링 기법을 연구하였다. 이에 대한 실험적 접근 방법으로서 축 방향 압축을 받는 직사각형 인공암석 보(beam)에 4점 휨 시험을 결합한 축방향 압축 휨 시험을 수행하여 대심도 지하공간의 응력모드와 유사한 조건 하에서의 암석의 균열 팽창 및 스폴링 과정을 고찰하였다. 또한, 수치해석적 접근방법으로서 기존의 연속체 해석으로는 모사하기 힘든 암석의 균열과정 및 팽창특성을 개별 입자해석 프로그램인 PFC2D를 이용하여 모델링 하였다. 본 연구 결과 휨 실험에서 구한 팽창시점은 스폴링에 요구되는 응력수준을 평가하는데 중요한 지표가 됨을 알 수 있었으며, 또한 수치해석 결과도 유사한 결과를 모사할 수 있음을 보여주었다

keywords
암석팽창, 스폴링, PFC, 불연속체 해석, DEM, 4점 휨 시험, Dilation, spalling, PFC, discrete element method, 4-point bending, Dilation, spalling, PFC, discrete element method, 4-point bending

Abstract

This paper presents both numerical and physical modeling approaches for the dilation and spalling of rock recognized as typical process of rock around an underground opening at depth. For physical approach, laboratory testing of rectangular beams using a synthetic rock was used to investigate the onset of dilation and spalling. The beams are axially compressed and subjected to 4-point bending to provide non-uniform compressive stresses which are similar to the maximum tangential stress distribution around circular openings. Discrete element numerical analyses using commercial code PFC2D (Particle Flow Code) were performed to evaluate the stress path at various locations in the beams. The findings from these approaches suggest that the onset of dilation in laboratory tests appears to be a good indicator for assessing the stress magnitudes required to initiate spalling.

keywords
암석팽창, 스폴링, PFC, 불연속체 해석, DEM, 4점 휨 시험, Dilation, spalling, PFC, discrete element method, 4-point bending, Dilation, spalling, PFC, discrete element method, 4-point bending

참고문헌

1.

1. 박대성, 김영근 (2007), “암반응력의 분포특성을 고려한 터널거동 분석에 관한 연구”, 터널기술, 한국터널공학회 논문집, 제9권, 제3호, pp. 275-286.

2.

2. 이강현, 방준호, 김진하, 김상호, 이인모 (2009), “지하공동의 취성파괴 예측을 위한 암석물성 및 손상지수 평가”, 터널기술, 한국터널공학회 논문집, 제11권, 제4호, pp. 327-351.

3.

3. 천대성, 정용복, 박 찬, 전석원 (2007), “CWFS모델변수 결정을 위한 손상제어시험 및 이를 활용한 취성파괴모델링”, 터널기술, 한국터널공학회 논문집, 제9권, 제3호, pp. 263-273.

4.

4. Andersson, J. C. (2007), “Äspö pillar stability experiment: rock mass response to coupled mechanical thermal loading”, PhD thesis, Royal Institute of Technology (Kungliga Tekniska Högskolan), KTH, Stockholm.

5.

5. Brace, W. F., Paulding, B. and Scholz, C. (1966), “Dilatancy in the fracture of crystalline rocks”, J Geophys Res, Vol. 71, pp. 3939-3953.

6.

6. Cho, N., Martin, C. D. and Sego, D. C. (2007), “A clumped particle model for rock”, Int J Rock Mech Min Sci, Vol. 44, pp. 997-1010.

7.

7. Diederichs, M. S. (2000), “Instability of hard rock masses: the role of tensile damage and relaxation”, PhD thesis, University of Waterloo.

8.

8. Dzik, E. J. (1996), “Numerical modeling of Progressive fracture in the compression loading of cylindrical cavities”, PhD, University of Manitoba.

9.

9. Ewy, R. T. and Cook, N. G. W. (1990), “Deformation and fracture around cylindrical openings in rock - I. observations and analysis of deformations”, Int J Rock Mech Min Sci Abstr, Vol. 27, pp. 387-407.

10.

10. Gay, N. C. (1973), “Fracture growth around openings in thickwalled cylinders of rock subjected to hydrostatic compression”, Int. J. Rock Mech. Min. Sci. Abstr, Vol. 10, pp. 209-233.

11.

11. Hibbeler, R. C. (1997), “Mechanics of material”, Prentice Hall.

12.

12. Hoek, E. (1965), “Rock fracture under static stress conditions”, National Mechanical Engi-neering Research Institute, Council for Scientific and Industrial Research, MEG383.

13.

13. Lajtai, E. Z. (1974), “Brittle fracture in compression”, Int J Fracture Mech, Vol. 10, pp. 525-536.

14.

14. Lee, M. and Haimson, B. (1993). “Laboratory study of borehole breakouts in lac du bonnet granite : a case extensile failure mechanism”, Int J Rock Mech Min Sci Abstr, Vol. 30, pp. 1039-1045.

15.

15. Lipson, C. and Juvinall, R. C. (1963), “Handbook of stress and strength”, Macmillan.

16.

16. Martin, C. D. (1997), “Seventeenth canadian geotechnical colloquium : the effect of cohesion loss and stress path on brittle rock strength” Can Geotech J, Vol. 34, pp. 698-725.

17.

17. Martin, C. D. and Chandler, N. A. (1994), “The progressive fracture of lac du bonnet granite”, Int J Rock Mech Min Sci Abstr, Vol. 31, No. 6, pp. 643-659.

18.

18. Martin, C. D., Martino, J. B. and Dzik, E. J. (1994), “Comparison of borehole breakouts from laboratory and field tests”, Proc. EUROCK’94, SPE/ISRM Rock Mechanics in Petroleum Engineering, Delft, A.A. Balkema, Rotterdam, pp. 183-190.

19.

19. Martin, C. D., Martino, J. B. and Read, R. S. (1997), “Observations of brittle failure around a circular test tunnel”, Int J Rock Mech Min Sci, Vol. 34, pp. 1065-1073.

20.

20. Martin, C. D., Kaiser, P. K. and McCreath, D. R. (1999), “Hoek-brown parameters for predicting the depth of brittle failure around tunnels”, Can. Geotech. J., Vol 36, pp. 136-151.

21.

21. Potyondy, D. O. and Cundall, P. A. (2004), “A bondedparticle model for rock”, Int J Rock Mech Min Sci, Vol. 41, pp. 1329-1364.

22.

22. RocScience Inc. (2002a) RocLab 1.007, http://www.rocscience.com.

23.

23. RocScience Inc. (2002b) Phase2D, http://www.rocscience.com.

24.

24. Santarelli, F. J. and Brown, E. T. (1989), “Failure of three sedimentary rocks in triaxial and hollow cylinder compression tests”, Int J Rock Mech Min Sci, Vol 26, pp. 401-413.

25.

25. Sellers, E. J. and Klerck, P. (2000), “Modelling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels”, Tunelling and Underground Space Technology, Vol. 15, pp. 463-469.

26.

26. Tapponnier, P. and Brace, W. F. (1976), “Development of stress-induced microcracks in westerly granite”, Int J Rock Mech Min Sci Abstr, Vol. 13, pp. 103-112.

(사)한국터널지하공간학회