바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

암반손상대를 고려한 터널 안정성 민감도 분석

Sensitivity analysis of tunnel stability with a consideration of an excavation damaged zone

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2014, v.16 no.1, pp.89-102
김진수 (인하대학교)
권상기 (인하대학교)
  • 다운로드 수
  • 조회수

초록

발파충격 또는 응력재분배에 의해 발생하는 암반손상대(Excavation Damaged Zone, EDZ)는 암반의 여러 물성들을 변화시킴으로써 구조물의 거동과 안정성에 영향을 미치게 된다. 본 연구에서는 EDZ를 고려한 터널에 대한 2차원 연속체 해석 코드인 FLAC을 이용하여 역학적 안정성을 해석하고 안정성에 관련된 인자들을 대상으로 부분요인설계법(Fractional Factorial Design)을 이용한 민감도 분석을 실시하였다. 모델링 결과 터널 주변의 거동과 안전율은 손상대 유·무에 따라 많은 차이가 있었다. 민감도 분석 결과 터널주변의 안전율에 많은 영향을 미치는 인자는 측압계수와 심도, 점착력, 물성 감소비, 터널의 폭, 내부 마찰각, 터널의 높이 순이었다. EDZ는 터널 주변의 역학적 안전성에 많은 영향을 미칠 수 있기 때문에 터널 설계 시 고려하는 것이 필요하다.

keywords
터널 해석, 암반손상대, FLAC, 실험계획법, 민감도 분석, 부분요인설계법, Tunnel analysis, EDZ, FLAC, Design of experiment, Sensitivity analysis, Fractional factorial design

Abstract

An Excavation Damaged Zone (EDZ), in which rock properties are permanently changed due to blasting impact or stress redistribution, can influence the behavior and stability of structures. In this study, the mechanical stability of an underground opening was simulated by using FLAC, which is a two-dimensional modeling code, with a consideration of EDZ. A sensitivity analysis was also carried out with fractional factorial design. From the modeling, it was founded that the behavior and the stability of an underground tunnel are strongly dependent on the existence of the EDZ. The sensitivity analysis showed that the key parameters affecting the factor of safety around the tunnel are in-situ stress ratio, depth, cohesion, reduction ratio, width of the tunnel and internal friction angle, height of the tunnel. It is necessary to consider the EDZ, which can significantly affect mechanical stability, in tunnel design.

keywords
터널 해석, 암반손상대, FLAC, 실험계획법, 민감도 분석, 부분요인설계법, Tunnel analysis, EDZ, FLAC, Design of experiment, Sensitivity analysis, Fractional factorial design

참고문헌

1.

1. Börgesson, L., Pusch, R., Fredicksson, A., Hökmark, H., Kamland, O., Sandén, R., 1992, “Final report of zones disturbed by blasting and stress release”, Stripa Project 92-08, SKB, Stockholm.

2.

2. Bossart, P., Meier, P.M., Moeri, A., Trick, T., Mayor, J., 2002, “Geological and hydraulic characterization of the excavation disturbed zone in the opalinus clay of the mont terri rock laboratory”, Engineering Geology 66, pp. 19-38.

3.

3. Bäckblom, G., 2008, “Excavation damage and disturbance in crystalline rock – Results from experiments and analyses”, SKB technical report TR-08-08, SKB, Stockholm.

4.

4. Cai, M., Kaiser, P.K., 2005, “Assessment of excavation damaged zone using a micromechanics model”,Tunnelling and Underground Space Technology, pp. 301-310.

5.

5. Carlson, S.R., Young, R.P., 1993, “Acoustic emission and ultrasonic velocity study of excavation-induced microcrack damage at the underground research laboratory”, International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 20, No. 7, pp. 901-907.

6.

6. Chandler, N.A., Kozak, E.T., Martin, C.D., 1996, “Designing the excavation disturbed zone for a nuclear repository in hard rock”, Proceeding of Can. Nucl. Soc., Sep 20, Winnipeg, Canada, Canadian Nuclear Society, Toronto.

7.

7. Chandler, N.A., Cournut, A., Dixon, D.A., Fairhurst, C., Hansen, F., Gray, M., Hara, K., Ishijima, Y., Kozak, E., Martino, J., Matsumito, K., McCrank, G., Sugita, Y., Thompson, P., Tillerson, J., Vignal, B., 2002, “The five-year report of the Tunnel Sealing Experiment: An international project of AECL”, JNC, ANDRA and WIPP, Atomic Energy of Canada Limited Report AECL-12727, Chalk River, Canada.

8.

8. Emsley, S., Olsson, O., Stenberg, L., Alheid, H.J., Falls, S., 1997, “A Study of damage and disturbance from tunnel excavation by blasting and tunnel boring”, ZEDEX, SKB(Swedish Nuclear Fuel and Waste Management Co.) Technical Report 97-30, p. 198.

9.

9. Ericsson, L.O., Brinkhoff, P., Gustafson, G., Kvartsberg. S., 2009, “Hydraulic features of the excavation disturbed zone – laboratory investigations of samples taken from the Q- and S- tunnels at Äspö HRL”, SKB Report R-09-45.

10.

10. Gray, M., 1993, “International stripa project 1980-1992”, Overview Volume Ⅲ, Engineered Barriers, SKB, Stockholm.

11.

11. Itasca Consulting Group Inc., 2002, FLAC, FISH in FLAC, Minneapolis, Minnesota, USA.

12.

12. Kim, H.C., 2007, “Introduction to design of experiment”, Hanol Publisher, pp. 1-2, p. 168, pp. 192-196.

13.

13. Kim, J.S., Kwon, S., Cho, W.J., 2009, “An assessment of the excavation damaged zone in the KAERI underground research tunnel”, Journal of Korean Society of Explosives & Blasting Engineering, Vol. 27, No. 1, pp. 21-31.

14.

14. Kwon, S., Cho W.J., 2008, “Investigation of the Development an the Effect of an Excavation Damaged Zone at KAERI Underground Research Tunnel”, KAERI/TR-3533/2008.

15.

15. Kwon, S., Lee, C.S., Cho, S.J., Jeon, S.W., Cho, W.J., 2009, “An investigation of the excavation damaged zone at the KAERI underground research tunnel”, Tunnelling and Underground Space Technology, Vol. 24, pp. 1-13.

16.

16. Kwon, S., Lee, C.S., Jeon, S.W., Choi, H.J., 2013, “Thermo-mechanical coupling analysis for APSE using submodels and neural networks”, Journal of Rock Mechanical and Geotechnical Engineering, Vol. 5, pp. 32-43.

17.

17. Lai, X., Cai, M., Ren, F., Xie, M., Esaki, T., 2006, “Assessment of rock mass characteristics and the excavation disturbed zone in the lingxin coal mine beneath the xitian river, china”, International Journal of Rock Mechanics & Mining Science 43, pp. 572-581.

18.

18. Lanyon, G.W., Diederichs, M., Leech, R.E.H., Lam, T., Jensen, M., 2011, “Excavation damaged zone assessment”, OPG’s Deep Geological Repository for Low & Intermediate Level Waste, NWMO DGR TR-2011/21.

19.

19. Lee, C.S., 2012, “Characterization of thermalmechanical behavior of rock mass in the excavation damaged zone at KURT”, Ph.D. thesis of Seoul national university, pp. 78-79.

20.

20. Lee, C.S., Kwon, S., Choi, J.W., Jeon, S., 2011, “An Estimation of the Excavation Damaged Zone at the KAERI Underground Research Tunnel”, Tunnel & Underground Space, Vol. 21, No. 5, pp. 359-369.

21.

21. Malmgren, L., Saiang, D., Töyrä, J., Bodare, A., 2007, “The Excavation Disturbed Zone (EDZ) at Kiirunavaara Mine, Sweden – by Seismic Measurements”, Journal of Applied Geophysics 61, pp.1-15.

22.

22. Martino, J.B., Chandler, N.A., 2004, “Excavationinduced damage studies at the underground research laboratory”, International Journal of Rock Mechanics & Mining Sciences 41, pp. 1413-1426.

23.

23. Park, S.H., 2010, “Enforcement method of design of experiment”, p. 2.

24.

24. Park, S.H., Kim, J.W., 2011, “Modern design of experiment using MINITAB”, Minyoung Publisher, p. 15, p. 324.

25.

25. Read, R.S., Martin, C.D., 1996, “Technical summary of AECL’s Mine-By Experiment, Phase 1: Excavation Responses, AECL-11311, CoG-95-171, AECL, Pinawa, Canada.

26.

26. Rutqvist, J., Stephansson, O., 2003, “The role of hydromechanical coupling in fractured rock engineering, Journal of Hydrogeology 11:7-40.

27.

27. Saiang, D., 2011, “Blast-induced damaged zone studies”, Final Report to Trafikverket, LuleåUniversity of Technology, Sweden.

28.

28. Saiang, D., Nordlund, E., 2008, “Numerical study of the mechanical behavior of the damaged rock mass around an underground excavation”, Appendix D: 2008 Massmin Power Point Presentation, Luleå University of Technology, Sweden.

29.

29. Tsang, C.F., Bernier, F., 2004, “Definitions of excavation disturbed zone and excavation damaged zone in impact of the excavation disturbed or damaged zone on the performance of radioactive waste geological repositories”, Proceedings European Commission CLUSTER Conference and Workshop on EDZ in Radioactive Waste Geological Repositories, Luxembourg

(사)한국터널지하공간학회