바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

쉴드터널 내부에 작용하는 열차진동 영향에 관한 수치해석적 연구

A numerical study on the effect of train-induced vibration in shield tunnel

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2014, v.16 no.2, pp.261-267
https://doi.org/10.9711
곽창원 (서울대학교)
박인준 (한서대학교)
박준범 (서울대학교)
  • 다운로드 수
  • 조회수

초록

다양한 종류와 크기의 하중이 터널에 재하되는데, 본 연구에서는 쉴드 터널 내부에 작용하는 열차 진동하중이 연약 사질지반에 미치는 영향을 3차원 수치모델에 의하여 수치해석적으로 검토하였다. 이를 위하여 사인함수와 열차제원을 이용하여 열차진동의 형상과 주파수를 산정하고 속도충격률 및 노반압력을 계산하여 열차진동하중을 획득하였다. 계산된 열차진동하중을 3차원 유한차분해석망에 재하하여 Finn model을 이용한 유효응력해석을 수행하였다. 그 결과, 시간에 따른 과잉간극수압이력을 산정하였고 과잉간극수압비를 이용하여 액상화 가능성을 판정하였다. 그 결과 열차진동하중에 의하여 과잉간극수압이 발생함을 확인하였으나, 발생 정도는 미미함을 확인하였다.

keywords
쉴드터널, 3차원수치모델, 열차진동, 액상화 가능성, Shield tunnel, 3D numerical simulation, Railway-induced vibration, Liquefaction potential

Abstract

Various types of external loads can be applied to the tunnel structure. In a shield tunnel, the vibration from the train may affect the behavior of the adjacent ground. In this study, the railway-induced vibration was estimated and applied to the shield tunnel through 3D numerical simulation. The effective stress analysis based on the finite difference method and Finn model was performed to investigate the potential of liquefaction below the tunnel. Furthermore, pore water pressure and displacement were monitored on a time domain; consequently, the liquefaction potential and dynamic response of the shield tunnel were analyzed. Consequently, it is confirmed that the generation of excess pore water pressure by train-induced vibrating load, however, the amount does not meaningfully affect the potential of liquefaction.

keywords
쉴드터널, 3차원수치모델, 열차진동, 액상화 가능성, Shield tunnel, 3D numerical simulation, Railway-induced vibration, Liquefaction potential

참고문헌

1.

1. Azadi, M., Hosseini, S.M.M.M. (2010), “Analyses of the effect of seismic behavior of shallow tunnels in liquefiable grounds”, Tunnelling and Underground Space Technology, 25: 543-552.

2.

2. Auersch, L. (2005), “The excitation of ground vibration by rail traffic: theory of vehicle-tracksoil interaction and measurements on high-speed lines”, Journal of Sound and Vibration, 284(1-2):103-132.

3.

3. Cheng, X., Xu, W., Yue, C., Du, X., Dowding, C.H. (2014), “Seismic response of fluid-structure interaction of undersea tunnel during bidirectional earthquake”, Ocean Engineering, 75: 64-70.

4.

4. Dias, D., Kastner, R. (2013), “Movements caused by the excavation of tunnels using face pressurized shields – Analysis of monitoring and numerical modeling results”, Engineering Geology, 152: 17-25

5.

5. Do, N.A., Dias, D., Oreste, P., Djeran-Maigre, I. (2014), “Three dimensional numerical simulation of a mechanized twin tunnels in soft ground”, Tunnelling and Underground Space Technology, 42: 40-51.

6.

6. Finn, W.D., Martin, G.R., Byrne, P.M. (1976), “Seismic response and liquefaction of sands. Journal of the Geotechnical Engineering Division”, ASCE, 102(8): 841-856.

7.

7. FLAC3D Manual, Itasca Consulting Group, Inc. 2002.

8.

8. Guo, Y., Jin, X., Ding, J. (2006), “Parallel numerical simulation with domain decomposition for seismic response analysis of shield tunnel”, Advances in Engineering Software, 37: 450-456.

9.

9. Gupta, S., Liu, W., Degrande, G., Lombaert, G. (2008), “Prediction of vibrations induced by underground railway traffic in Beijing”, Journal of Sound and Vibration. 310: 608-630.

10.

10. Gupta, S., Gerghe, H.V.D., Lombaert, G., Degrande, G. (2010), “Numerical modeling of vibrations from a Thalys high speed train in the Groene Hart tunnel”, Soil Dynamics and Earthquake Engineering, 30: 82-97.

11.

11. Martin, G.R., Finn, W.D., Seed, H.B. (1975), “Fundamentals of Liquefaction Under Cyclic Loading”, Journal of Geotechnical Engineering Division, ASCE, 101(GT5): 423-438.

(사)한국터널지하공간학회