바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

해저터널용 복합신소재 배수복합관 부재의 정적거동에 관한 실험적 연구

An experimental study on the static behavior of advanced composite materials drainage pipe member for an undersea tunnel

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2015, v.17 no.2, pp.65-74
신종호 (건국대학교)
김강현 (건국대학교)
김두래 (건국대학교)
지효선 (대원대학교)
  • 다운로드 수
  • 조회수

초록

해저터널용 복합신소재 배수관구조를 설계하기 위해서는 복합신소재 구조부재의 적층형태별 역학적 성질을 결정하는 것이 필수적이다. 복합신소재는 일반적으로 등방성 재료와 달리 치수효과가 매우 큰 것으로 알려져 있다. 본 연구에서는 복합신소재 부재의 적층형태별 인장시험을 상온(20°C)과 해수온도(0°C)에서 각각 수행하였다. 또한, 이론적 해석방법인 혼합물의 법칙과 탄성해법을 적용하여 재료의 역학적 성질을 추정하고 시험결과와 비교를 하였다. 해저터널 복합신소재 배수관 구조부재를 설계할 때 사용되는 역학적 성질의 값은 상온에서 얻어진 값을 보정하여 적용하여야 된다. 이러한 자료는 향후 해저터널용 복합신소재 배수관구조의 설계의 기초자료로 제공하고자 하였다.

keywords
복합신소재, 배수관 구조물, Lamina 종류, 역학적 물성치, 인장시험, Advanced composite materials, Drainage pipe structures, Lamina types, Mechanical properties, Tensile test

Abstract

In order to design an advanced composite materials drainage pipe structures for an undersea tunnel, mechanical properties for the lamina types of the structural member must be predetermined. It is also reported that the size effect of the specimen is significant. In this study the tensile tests for the lamina types of the structural member are conducted at the room temperature (20°C) and the seawater temperature (0°C). In addition, the mechanical properties are predicted by theory based on the rule of mixtures and elasticity solution technique. The predicted mechanical properties are compared with test results obtained by a test method. In the design of an advanced composite materials drainage pipe structural members for an undersea tunnel, the used mechanical properties must be applied at the room temperature with considering the modified factors. These are to be offered the datum for the design an advanced composite materials drainage pipe structures for an undersea tunnel.

keywords
복합신소재, 배수관 구조물, Lamina 종류, 역학적 물성치, 인장시험, Advanced composite materials, Drainage pipe structures, Lamina types, Mechanical properties, Tensile test

참고문헌

1.

1. ASTM D3039 (2000), “Standard test method for tensile properties of polymer matrix composite materials”, American Society for Testing and Materials.

2.

2. Bakis, C.E., Bank, L.C., Brown, V.L., Cosenza, E., Davalos, J.F., Lesko, J.J., Machida, A., Rizkalla, S.H., Triantafillou, T.C. (2002), “Fiberreinforced polymer composites for constructionstate-of-the art review”, ASCE Journal of Bridge Engineering, Vol. 6, No. 2, pp. 73-87.

3.

3. Clarke, J.L.(Ed) (1996), “Structural design of polymer composites - EUROCOMP design code and handbook”, E&FN Spon, London, England.

4.

4. Jones, R.M. (1975), “Mechanics of composite materials, scripta book company”, Washington, D.C.

5.

5. Kim, D.H. (1995), “Composite structures for civil and architectural engineering”, E&FN Spon, London, England.

6.

6. Matthews, F.L., Rawlings, R.D. (1994), “Composite materials : engineering and science”, Chapman &Hall.

(사)한국터널지하공간학회