바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

네트워크형 터널의 풍량 및 농도해석 프로그램 개발연구

Development of a program to predict the airflow rate and pollutant concentration in complex network-type tunnels

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2017, v.19 no.2, pp.213-229
https://doi.org/10.9711/KTAJ.2017.19.2.213
김효규 (㈜주성지앤비 대표이사)
최판규 ((주)주성지앤비)
유지오 (신한대학교)
이창우 (동아대학교 에너지자원공학과)
  • 다운로드 수
  • 조회수

초록

최근 도심지 터널은 진출입 Ramp를 포함한 다양한 형태의 네트워크형 터널이 건설되고 있다. 더불어 터널환기 해석을위한 다양한 네트워크 이론 기반의 1D 프로그램들이 개발되고 있다. 본 연구에서는 비 hardy-cross 법에 기초한 네트워크형 터널에 대한 풍량 및 농도해석이 가능한 프로그램을 개발하였다. 터널 구간내 풍량해석은 Gradient 법에 기초하고있으며, 농도해석을 위하여 복잡한 네트워크 구조에서 유입과 유출농도를 자동계산 할 수 있는 로직을 개발하였고, 저속풍량구간에서는 수치해석적 오차를 축소시키기 위한 적정 그리드 간격을 제시하였다. 또한, 프로그램의 적정성을 검증하기 위해, 일자형 터널을 대상으로 고전적인 Sokic의 풍속 선도법 및 TVSDM 프로그램과의 풍속비교검증을 수행하였으며 오차율은 1% 이하였다. 또한 최근 건설되는 도심지 터널에 적용중인 최신 환기방식에 대한 네트워크 환기해석을수행하였다.

keywords
터널환기, 네트워크, 프로그램, Gradient 법, 농도계산, Tunnel ventilation, Network, Program, Gradient method, Calculation of concentration

Abstract

Recently, in urban areas there is a tendency to construct more complex network-type tunnels including entrance and exit ramps. At the same time, various one-dimensional programs based on the network theory have been proposed for tunnel ventilation analysis. This paper aims at developing a program that can analyze the ventilation flow rate and pollutants concentration in complex network-type tunnels based on the none hardy-cross method. The flow analysis in the branch was carried out on the basis of the Gradient method, while for the concentration analysis a new logic has been developed to calculate the inflow and outflow concentration automatically in a complex networktype structure. Additionally, in the tunnel segments showing low flow rate, proper grid interval sizes were proposed to reduce numerical error. To verify the applicability of the program, flow rates predicted in the straight tunnels were compared with the classical velocity-diagram method by Stokic and the TVSDM program. The results showed that the errors were within 1%. In addition, the program was applied to the recent ventilation system adopted in the complex network-type urban tunnels.

keywords
터널환기, 네트워크, 프로그램, Gradient 법, 농도계산, Tunnel ventilation, Network, Program, Gradient method, Calculation of concentration

참고문헌

1.

1. Choi, J.H. (2016), “Construction of Urban Underground Road: Attractive Alternative for Reducing Traffic Congestion”, KSCE Journal of Civil Engineering, Vol. 64, No. 8, pp 33-37.

2.

2. IDA RTV/Tunnel(http://www.equa.se).

3.

3. JS-G&B Inc., (2012), PNETs Ver 1.0, CROS, C-2012-008543 (https://www.cros.or.kr).

4.

4. Kim, H.G., Choi, P.G., Hong, Y.J., Yoo, J.O. (2015), “A comparative study of field measurements of the pressure wave with analytical aerodynamic model for the high speed train in tunnels”, Journal of Korean Tunnelling and Underground Space Assoication, Vol.17, No.3, pp. 319-332.

5.

5. Kim, H.G., Choi, P.G., Ryu, J.O., Lee, C.W. (2016b), “A Fundamental Study on the Ventilation Analysis Method for the Network-type Tunnel-Focused on the None Hardy-Cross Method”, Journal of Korean Tunnelling and Underground Space Assoication, Vol.18, No.3, pp. 291-303.

6.

6. Kolon CO. Ltd. (1998), “Development of the Optimal Design System for the Vehicle Tunnel Ventilation System”, KEC-97-C10-2, pp. 1-174.

7.

7. Lee, C.W., Lee, S.H., Baek, D.H., Moon, S.K. (1997a), “Development of a simulation model for the vehicle tunnel ventilation using network theories”, Proceedings of the 1st Asian Rock Mechanics Symposium.

8.

8. Lee, C.W., Lee, S.H., Choi, S.I., Baek, D.H., Moon, S.K. (1997b), “Simulation Modeling of the vehicle tunnel ventilation system using network theory”, KSGE, Vol. 34, pp. 617-629.

9.

9. Ministry of Land, Infrastructure and Transport (2011), “Road Design Manual(617. Ventilation)”, pp. 617-658.

10.

10. Park, S.H., Lee, S.J., Park, Y.H., Kim, S.M., Roh, J.H., Yoo, Y.H., Kim, J. (2016a), “Design Factors for the Ventilation System of a Networked Double-deck Tunnel”, TUNNEL & UNDERGROUND SPACE Vol. 26, No. 1, pp. 32-45.

11.

11. Parsons Brinckerhoff Quade & Douglas, Inc. (1997), “Subway Environmental Design Handbook”, Volume 2, Subway Environmental Simulation Computer Program-SES Version 4, Part 1 User’s Manual, pp. 1-1-E-19.

12.

12. ReoGrid(https://reogrid.net/).

13.

13. Sato, N., Ohta, Y., Komatsu, K. (1985), “Discharge of Exhaust Pollutnat from Portal of One-way Traffic Automobile Tunnel with Exhaust Shaft”, 5th AVVT, H2-445-H2-460.

14.

14. Schlaug, R.N., Carlin, T.J. (1979), “Aerodynamics and Air Quality Management of Highway Tunnels”, U.S. Federal Highway Administration, pp. 551.

15.

15. Shin, H.J., Kim, J.Y., Lew, J.O, Yun, C.Y. (1999), “Study on the desing technique of the road tunnel ventilation system”, SAREK, 1999 Proceedings of the summer symposium, 99-S-054, pp. 329-336.

16.

16. Stokic. D. (1976), “Diagram for tunnel air velocity calculation due to simultaneous action of traffic and outer meteorological influences”, 2nd AVVT, 1976, D3-45 D3-56.

17.

17. ThermoTun(http://www.thermotun.com/).

(사)한국터널지하공간학회