바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

철도터널 내 화재 시 대피환경 확보를 위한 임계속도 산정식의 유효성 평가

Effectiveness of critical velocity method for evacuation environment in a railroad tunnel at fire situation

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2004, v.6 no.1, pp.51-60
이승철 (중앙대학교)
이재헌 (한양대학교)
이승호 (상지대학교)

초록

본 연구에서는 3차원 전산유체역학 기법을 이용하여 열차터널 내 10MW급 화재발생 시, 대피환경에 대한 1차원 임계속도의 유효성을 평가하였다. 또한 터널의 입구속도가 1m/s, 2m/s (임계속도) 그리고 3m/s일 때의 터널 내 기류분포, 온도분포, 가시거리분포 및 오염물질분포가 대피환경에 미치는 영향을 각각 검토하였다. 그 결과, 세 가지 경우 모두, 승객의 안전한 대피환경을 충분하게 제공하지 못할 것으로 예상되어 승객들은 유동방향 하류로 대피하여야 한다. 그러나 3m/s 입구속도의 경우는 1m/s, 2m/s의 경우 보다 승객의 대피환경에 있어서 좀 더 나은 결과를 보인다. 따라서 터널의 방재시스템의 설계 시, 안전한 대피환경을 확보하기 위해서는 임계속도보다 큰 입구속도의 사용이 요구된다

keywords
Critical velocity, evacuation environment, tunnel fire, 임계속도, 대피환경, 터널화재, Critical velocity, evacuation environment, tunnel fire

Abstract

The effectiveness of one dimensional critical velocity method for evacuation environment at 10MW fire size in a railroad tunnel have been investigated in this paper by three dimensional CFD method. It was performed to evaluate the evacuation environment in terms of temperature distribution, visible distance distribution and CO concentration at some tunnel inlet velocity, 1m/s, 2m/s (near critical velocity), and 3m/s. At all inlet velocity, passenger should give away downward the flow direction because the inlet velocity can not afford to sufficient evacuation environment for passengers. In case of 3m/s inlet velocity, however, the evacuation environment for passengers is better than the other cases. To provide more safe evacuation environment on fire situation, tunnel inlet velocity should be larger than critical velocity.

keywords
Critical velocity, evacuation environment, tunnel fire, 임계속도, 대피환경, 터널화재, Critical velocity, evacuation environment, tunnel fire

참고문헌

1.

(1997) Detailed simulation of smoke movement due to a train fire in the context of general safety considerations for the gotthard base tunnel,

2.

(1997) Validation of a CFD model for fires in the memorial tunnel, Proc. 9th Int. ,

3.

(1995) Fires in transport Tunnels, Report on full-Scale Tests, Editor,

4.

(1999) 철도터널 환기설계의 기초,

5.

(2000) 철도터널화재시 터널내부 환경에 관한 연구, 한양대학교.

6.

(1997) study of the effect of tunnel aspect ratio on control of smoke flow in tunnel fires, Proc. 9th Int. Symp.,

7.

(1999) Critical Velocity-Comparative Assessment of Test Results and CFD Simulation, International Conference Tunnel Fires and Escape from Tunnels, ,

8.

(1998) NIST GCR 98-761: Evolution of Performance-Based Codes and Fire Safety Design Methods ,

9.

(1999) Safety Requirement and Regulations Reviews on Ventilation and Fire for Tunnels in the Hong Kong Special Administrative Region,

10.

(2000) Standard for Fixed Guideway Transit and Passenger Rail Systems,

11.

(1997) Critical Velocity Past,

12.

(1979) Interaction between Duct Fires and Ventilation Flow,

13.

(1984) Turbulence Model and Their Application in Hydraulics,

14.

(1997) New French Recommendations for Fire Ventilation in Road Tunnels, Proc. 9th Int. ,

(사)한국터널지하공간학회