바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

A report on 20 unrecorded bacterial species of Korea isolated from soil in 2021

Journal of Species Research / Journal of Species Research, (E)2713-8615
2022, v.11 no.4, pp.310-320
https://doi.org/10.12651/JSR.2022.11.4.310
Ji Yeon Han (상지대학교)
Oung Bin Lim (상지대학교)
So-Yi Chea (상지대학교)
Hyosun Lee (상지대학교)
Ki-Eun Lee (Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea)
In-Tae Cha (Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea)
Won-Jae Chi (Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea)
김동욱 (상지대학교)

Abstract

As a subset study to discover indigenous prokaryotic species in Korea, we isolated 20 bacterial strains and assigned them to the phyla Actinobacteria, Bacteroidota, Firmicutes, and Proteobacteria. From the high 16S rRNA gene sequence similarity (≥ 98.7%) and formation of a robust phylogenetic clades, we determined that each strain belonged to independent, predefined bacterial species. There are no official reports of these 20 species in Korea; therefore, 7 strains of the Actinobacteria, 2 strain of the Bacteroidota, 3 strains of the Firmicutes, and 8 strains of the Firmicutes are described in Korea for the first time. Gram reaction, colony and cell morphology, basic biochemical characteristics, and isolation sources are also described in the species description section.

keywords
16S rRNA, bacterial diversity, unreported species

참고문헌

1.

Alexander, M. 1999. Biodegradation and bioremediation. Gulf Professional Publishing.

2.

Doetsch, R.N. 1981. Determinative methods of light microscopy. Manual of Methods for General Bacteriology 21-33.

3.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783-791.

4.

Gao, B. and R.S. Gupta. 2005. Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 55(6):2401-2412.

5.

Gianfreda, L. and M.A. Rao. 2008. Interactions between xenobiotics and microbial and enzymatic soil activity. Crit Rev Environ Sci Technol 38(4):269-310.

6.

Higson, F.K. 1991. Degradation of xenobiotics by white rot fungi. Rev Environ Contam Toxicol 111-152.

7.

Hong, S.H., S.M. Lee and E.Y. Lee. 2011. Bioremediation Efficiency of Oil-Contaminated Soil using Microbial Agents. MBL 39(3):301-307.

8.

King, G.M., J.E. Kostka, T.C. Hazen and P.A. Sobecky. 2015. Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea. Ann Rev Mar Sci 7:377-401.

9.

Kim, D.U., C.N. Seong, K. Jahng, S.D. Lee, C.J. Cha, K. Joh, C.O. Jeon, S.B. Kim and M.K. Kim. 2018. A report on 15 unrecorded bacterial species of Korea isolated in 2016, belonging to the class Betaproteobacteria. JSR 7(2):97-103.

10.

Kim, D.U., J.Y. Kim, C.J. Cha, W. Kim and M.K. Kim. 2018. A report of unrecorded bacterial species of Korea isolated in 2016, belonging to the family Deinococcaceae and Planctomycetaceae. JSR 7(1):9-12.

11.

Kim, H.J., Y.J. Jung, H.Y. Kim and M. Hur. 2019. Isolation and characterization of 6 unrecorded Pseudomonas spp. from Korean soil. KJM 55(1):39-45.

12.

Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press.

13.

Kumar, S., G. Stecher and K. Tamura. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870-1874.

14.

Lawson, P.A. 2018. The phylum Actinobacteria. The Bifidobacteria and Related Organisms 1-8.

15.

McClain, C.R., C. Nunnally and M.C. Benfield. 2019. Persistent and substantial impacts of the Deepwater Horizon oil spill on deep-sea megafauna. R Soc Open Sci 6(8):191164.

16.

Nahar, S., D.H. Lee, J.W. Bae, W.T. Im, K.Y. Jahng, K. Joh, W. Kim, S.D. Lee, H. Yi and C.J. Cha. 2018. Report on 30 unrecorded bacterial species of the phylum Firmicutes isolated from Korea in 2016. JSR 7(1):50-59.

17.

Nedashkovskaya, O.I., S.B. Kim, M. Suzuki, L.S. Shevchenko, M.S. Lee, K.H. Lee, M.S. Park, G.M. Frolova, H.W. Oh, K.S. Bae, H.Y. Park and V.V. Mikhailov. 2005. Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum ‘Bacteroidota’, and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 55(6):2583-2588.

18.

Pruesse, E., J. Peplies and F.O. Glöckner. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28(14):1823-1829.

19.

Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406-425.

20.

Seong, C.N., M.S. Kim, J.W. Kang and H.M. Park. 2019. Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species. JSR 8(2):197-214.

21.

Sintayehu, D.W. 2018. Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. EHS 4(9):225-239.

22.

Smith, D., H. Hinz, J. Mulema, P. Weyl and M.J. Ryan. 2018. Biological control and the Nagoya Protocol on access and benefit sharing-a case of effective due diligence. Biocontrol Sci Technol 28(10):914-926.

23.

Thomas, F., J.H. Hehemann, E. Rebuffet, M. Czjzek and G. Michel. 2011. Environmental and gut Bacteroidota: the food connection. Front. Microbiol 2:93.

24.

Weisburg, W.G., S.M. Barns, D.A. Pelletier and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697-703.

25.

Yoon, S.H., S.M. Ha, S. Kwon, J. Lim, Y. Kim, H. Seo and J. Chun. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613.

Journal of Species Research