E-ISSN : 2713-8615
Parmotrema clavuliferum (Räsänen) Streimann and P. reticulatum (Taylor) M. Choisy (Parmeliaceae, lichenized Ascomycotina) have similar morphological characters such as wide lobes with soralia, reticulatemaculate on upper surface of lobes, and marginal cilia. In addition, they both produce salazinic acid and atranorin as major chemical substances. These similar properties found in both species have led to confusion in recognizing them as distinct species; however, P. clavuliferum is distinguished from the latter by capitate soralia on short laciniae which are always mottled white and by the production of fatty acid and gyrophoric acid together with salazinic acid. In addition, the most likely phylogenetic tree of these species shows that they are nested in well-supported monophyletic groups. Therefore, it is reasonable to recognize them as two separate species, P. clavuliferum and P. reticulatum. Keywords: Parmotrema clavuliferum, Parmotrema reticulatum, separated species, lichens
Aptroot, A., S. Parnmen, R. Lücking, E. Baloch, P. Jungbluth, M.E.S. Cáceres and H.T. Lumbsch. 2014. Molecular phylogeny resolves a taxonomic misunderstanding and places Geisleria close to Absconditella s. str. (Ostropales: Stictidaceae). The Lichenologist 46: 115-128.
Barbosa, S.B. and M.P. Marcelli. 2010. Comparative thallus anatomy of two Parmotrema (Parmeliaceae, lichenized Ascomycetes) with reticulate maculae. Acta Botanica Brasilica 24(3): 803-811.
Blanco, O., A. Crespo, P.K. Divakar, J.A. Elix and H.T. Lumbsch., 2005. Molecular phylogeny of parmotremoid lichens (Ascomycota, Parmeliaceae). Mycologia 97(1): 150-159.
Crespo, A., O. Blanco and D.L. Hawksworth. 2001. The potential of mitochondrial DNA for establishing phylogeny and stabilising generic concepts in the parmelioid lichens. Taxon 50(3): 807-819.
Crespo, A. and S. Pérez-Ortega. 2009. Cryptic species and species pairs in lichens: A discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid 66(S1): 71-81.
Culberson, C.F. and A. Johnson. 1982. Substitution of methyl tert.-butyl ether for diethyl ether in the standardized thinlayer chromatographic method for lichen products. Journal of Chromatography A 238(2): 483-487.
DEL-PRADO, R., P.K. Divakar and A. Crespo. 2011. Using genetic distances in addition to ITS molecular phylogeny to identify potential species in the Parmotrema reticulatum complex: a case study. The Lichenologist 43: 569-583.
Divakar, P.K., O. Blanco, D.L. Hawksworth and A. Crespo. 2005. Molecular phylogenetic studies on the Parmotrema reticulatum (syn. Rimelia reticulata) complex, including the confirmation of P. pseudoreticulatum as a distinct species. The Lichenologist 37: 55.
Elix, J.A. 2001. Additional lichen records from Oceania 7. Parmeliaceae from Fiji. Australasian Lichenology 48: 34-37.
Felsenstein, J. 1985. Confidence limits on phylogenies; an approach using the bootstrap. Evolution 39: 783-791.
Gardes, M. and T.D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.
Hale, M.E. and A. Fletcher. 1990. Rimelia Hale & Fletcher, a new lichen genus (Ascomycotina: Parmeliaceae). Bryologist 93: 23-29.
Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
Hecher, K.H. and K.H. Roux. 1996. High and Low Annealing Temperatures Increase Both Specificity and Yield in Touchdown and Stepdown PCR. BioTechniques 20: 478-485.
Huelsenbeck, J.P. and F. Ronquist. 2001. MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
Kashiwadani, H., M. Inoue and K.H. Moon. 2000. Lichens of Shodo-shima Island, Shikoku, Japan. Mem. Natn. Sci. Mus., Tokyo (32): 99-113.
Kashiwadani, H., K.H. Moon, M. Inoue, G. Thor and Y.S. Kim. 2002. Lichens of the Cheju Island, Republic of Korea 1. The Macrolichens. In Proc. 3rd & 4th Symp. Collection Building Nat. Hist. Stud. in Asia and the Pacific Rim, Natn. Sci. Mus. Monogr. (22): 115-135.
Komine, M., Y. Usuniwa, K. Haraand and Y. Yamamoto. 2014. Distributions of foliose species of parmeliaceous lichens in northern Japan. Parmotrema chinense, Myelochroa leucotyliza and Rimelia clavulifera. Lichenology 12(2): 75-78.
Kurokawa, S. 1991. Japanese species and genera of the Parmeliaceae. J. Jpn. Bot. 66(3): 152-159.
Kurokawa, S. and M. Lai. 2001: Parmelioid lichen genera and species in Taiwan. Mycotaxon 77: 225-284.
Larget, B. and D.L. Simon. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16: 750-759.
Lendemer, J.C. and B.P. Hodkinson. 2012. Chirleja buckii, a new genus and species of lichenized-fungi from Tierra del Fuego, southern South America. New Zealand Journal of Botany 50: 449-456.
Moon, K.H. 1999. Lichens of Mt. Sorak in Korea. J. Hattori Bot. Lab. 86: 187-220.
Moon, K.H., S. Kurokawa and H. Kashiwadani. 2000. A list of Thailand species of Parmelia (sens. lat.) preserved in TNS. Natn. Sci. Mus., Tokyo, Monograph (18): 97-106.
Moon, K.H., S. Kurokawa and H. Kashiwadani. 2001. The genus Rimelia (Lichens) from the Hawaiian Islands. J. Jpn. Bot. 76: 321-328.
Ohmura, Y., H. Kashiwadani and K.H. Moon. 2012. Recovery of macrolichen flora in the Imperial Palace Ground, Tokyo, Japan. J. Jpn. Bot. 87(1): 51-57.
Ohmura, Y., K.H. Moon and H. Kashiwadani. 2008. Morphology and molecular phylogeny of Ramalina pollinaria, R. sekika, and R. yasudae (Ramalinaceae, lichenized Ascomycotina). J. Jpn. Bot. 83: 156-164.
Park, Y.S. 1990. The macrolichen flora of South Korea. The Bryologist 93(2): 105-160.
Posada, D. 2008. jModelTest: Phylogenetic Model Averaging. Molecular biology and evolution 25(7): 1253-1256.
Räsänen, A.V. 1944. Lichenes Novi I. Annales Botanici Societatis Zoologicae-Botanicae Fennicae “Vanamo” 20: 1-34.
Schoch, C.L., K.A. Seifert, S. Huhndorf, V. Robert, J.L. Spouge, C.A. Levesque, W. Chen and Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences.
Spielmann, A.A. and M.P. Marcelli. 2009. Parmotrema sl (Parmeliaceae, lichenized Ascomycota) from Serra Geral slopes in central Rio Grande do Sul State, Brazil. Hoehnea 36(4): 551-595.
Stamatakis, A. 2014. RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 30(9): 1312-1313.
Streimann, H. 1986. Catalogue of the Lichens of Papua New Guinea and Irian Jaya. Bibliotheca Lichenologica 22. J. Cramer, Berlin and Stuttgart. 145 pp.
Swofford, D.L. 2003. PAUP *: Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, MA: Sinauer Associates.
Tamura, K. and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10(3): 512-526.
Taylor, T. 1836. (in Mackay, J., T. Taylor and W.H. Harvey). Flora Hibernica, comprising the Flowering Plants, Characeae, Musci, Hepaticae, Lichenes and Algae of Ireland. Dublin, London & Edinburgh. 1-650 pp.
Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876-4882.
White, T.J., T.D. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M.A. Innis, D.H. Gelfand, J.J. Sninsky & T.J. White (eds.), PCR Protocols, San Diego: Academic Press. pp. 315-322.
Zoller, S., C. Scheidegger and C. Sperisen. 1999. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511-516.