바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

A report of 11 unrecorded bacterial species in Korea isolated in 2017

Journal of Species Research / Journal of Species Research, (E)2713-8615
2018, v.7 no.2, pp.135-150
https://doi.org/10.12651/JSR.2018.7.2.135
Soohyun Maeng
Myung Kyum Kim
Jun Hwee Jang
Myung-Suk Kang
kim juyoung

Abstract

Eleven bacterial strains 17SD2_15, 17Sr1_23, 17SD2_13, 17Sr1_31, 17gy_18, 16B15D, 16B02D, 16B04G, 16B01D, 17U4-2 and 17J28-10 assigned to the phylum Proteobacteria were isolated from soil samples collected from Seoul Women’s University, in South Korea. The Belnapia species, strain 17SD2_15 was cocci-shaped and pink-colored. The Methylobacterium species, strain 17Sr1_23, 17SD2_13, 17Sr1_31, and 16B15D were short rod-shaped and pink-colored. The Microvirga species, strain 17gy_18, and 16B02D were short rod-shaped and pink-colored. The Oxalicibacterium species, strain 16B04G was short rod-shaped and pink-colored. The Sphingomonas species, strain 16B01D was short rod-shaped and yellow-colored. The Variovorax species, strain 17U4-2 was cocci-shaped and yellow-colored. The Paracoccus species, 17J28-10 was cocci-shaped and orange-colored. Phylogenetic analysis based on 16S rRNA gene sequence showed that strains 17SD2_15, 17Sr1_23, 17SD2_13, 17Sr1_31, 17gy_18, 16B15D, 16B02D, 16B04G, 16B01D, 17U4-2 and 17J28-10 were most closely related to Belnapia soli (with 99.9% similarity), Methylobacterium gregans (99.1%), Methylobacterium isbiliense (99.6%), Methylobacterium oxalidis (99.9%), Microvirga aerilata (98.7%), Methylobacterium aerolatum (99.0%), Microvirga vignae (100.0%), Noviherbaspirillum canariense (100.0%), Sphingomonas desiccabilis (100.0%), Variovorax humicola (99.6%), and Paracoccus acridae (99.1%), respectively. This is the first report of these eleven species in Korea.

keywords
16S rRNA, bacterial diversity, Proteobacteria, unreported species

Reference

1.

Ardley, J.K. et al. 2012. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifcally nodulate and fx nitrogen with geographically and taxonomically separate legume hosts. International Journal of Systematic and Evolutionary Microbiology 62:2579-2588.

2.

Cao, Y.-R. et al. 2011. Methylobacterium soli sp. nov. a methanol-utilizing bacterium isolated from the forest soil. Antonie Leeuwenhoek 99:629-634.

3.

Doetsch, R. 1981. Determinative methods of light microscopy. Manual of methods for general bacteriology. pp. 21-33.

4.

Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797.

5.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.

6.

Gallego, V., M.T. Garcia and A. Ventosa. 2005. Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. International Journal of Systematic and Evolutionary Microbiology 55:281-287.

7.

Garrity G.M., J.A. Bell and T. Lilburn. 2005a. Family IX. Methylobacteriaceae fam. nov. In: Brenner, D.J., N.R. Krieg, J.T. Staley, G.M. Garrity (eds.), Bergey's manual of systematic bacteriology, vol 2, Part C: the alpha- beta-, delta- and Epsilonproteobacteria. Springer, New York, pp. 567-571.

8.

Garrity, G.M., J.A. Bell and T. Lilburn. 2005b. Family I. Rhodobacteraceae fam. nov. In: Brenner, D.J., N.R. Krieg, J.T. Staley and G.M. Garrity (eds.), Bergey's manual of systematic bacteriology, vol 2, 2nd edn, The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp. 161-228.

9.

Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. In: Nucleic acids symposium series, 1999. vol 41. [London]: Information Retrieval Ltd., c1979-c2000., pp. 95-98.

10.

Kanso, S. and B.K. Patel. 2003. Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. International Journal of Systematic and Evolutionary Microbiology 53:401-406.

11.

Kelly, D.P., I.R. McDonald and A.P. Wood. 2014. The Family Methylobacteriaceae. In: E. Rosenberg, E.F. DeLong, S. Lory, E. Stackebrandt, and F. Thompson (eds.), The Prokaryotes. Springer, Berlin, Heidelberg.

12.

Kim, O.-S. et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology 62:716-721.

13.

Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press.

14.

Komagata, K., T. Iino and Y. Yamada. 2014. The Family Acetobacteraceae. In: E. Rosenberg, E.F. DeLong, S. Lory, E. Stackebrandt and F. Thompson (eds.), The Prokaryotes. Springer, Berlin, Heidelberg. pp. 3-78.

15.

Konovalova, A.M., S.O. Shylin and P.V. Rokytko. 2007. Characteristics of carotinoids of methylotrophic bacteria of the Methylobacterium genus. Mikrobiol Z (Kiev) 69:35-41 (in Ukrainian).

16.

Kosako, Y., E. Yabuuchi, T. Naka, N. Fujiwara and K. Kobayashi. 2000. Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu. 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel. 1936, and San- daracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiology and Immunology 44:563-575.

17.

Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425.

18.

Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731-2739.

19.

Weisburg, W.G., S.M. Barns, D.A. Pelletier and D.J. Lane. 1991. 16S ribosomal DNA amplifcation for phylogenetic study. Journal of Bacteriology 173:697-703.

20.

Weon, H.Y., S.W. Kwon, J.A. Son, E.H. Jo, S.J. Kim, Y.S. Kim, B.Y. Kim and J.O. Ka. 2010. Description of Microvirga aerophila sp. nov., and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov., and emended description of the genus Microvirga. International Journal of Systematic and Evolutionary Microbiology 60:2596-2600.

21.

Willems, A., J. De Ley, M. Gillis and K. Kersters. 1991. Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis) 1969. International Journal of Systematic Bacteriology 41:445-450.

22.

Wragg, P., L. Randall and A.M. Whatmore. 2014. Comparison of Biolog GEN III MicroStation semi-automated bacterial identifcation system with matrix-assisted laser desorption ionization-time of flightmass spectrometry and 16S ribosomal RNA gene sequencing for the identification of bacteria of veterinary interest. Journal of Microbiological Methods 105:16-21.

23.

Xu, P., W.J. Li, S.K. Tang, Y.Q. Zhang, G.Z. Chen, H.H. Chen, L.H. Xu and C.L. Jiang. 2005. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family "Oxalobacteraceae" isolated from China. International Journal of Systematic and Evolutionary Microbiology 55:1149-1153.

Journal of Species Research