바로가기메뉴

본문 바로가기 주메뉴 바로가기

Test Vector Generator of timing simulation for 224-bit ECDSA hardware

Journal of The Korea Internet of Things Society / Journal of The Korea Internet of Things Society, (P)2799-4791;
2015, v.1 no.1, pp.33-38
https://doi.org/https://doi.org/10.20465/kiots.2015.1.1.033
Kim, Tae Hun
Jung, Seok Won

Abstract

Hardware are developed in various architecture. It is necessary to verifying value of variables in modules generated in each clock cycles for timing simulation. In this paper, a test vector generator in software type generates test vectors for timing simulation of 224-bit ECDSA hardware modules in developing stage. It provides test vectors with GUI format and text file format.

keywords
전자서명, 테스트 벡터, 시간 시뮬레이션, 하드웨어 구조

Reference

1.

John A. Stankovic. (2014). Research Directions for the Internet of Things. Internet of Things Jour., IEEE, 1(1), 3-9. 10.1109/JIOT.2014.2312291.

2.

C. Qiang, G. Quan, B. Yu and L. Yang. (2013). Research on Security Issues of the Internet of Things. International Journal of Future Generation Communication and Networking, 6(6), 1-10.

3.

J. Nisha, S. Saetang, C. Chen, S. Kutzner, S. Ling and A. Poschmann. (2013). Feasibility and practicability of standardized cryptography on 4-bit micro controllers (184-201). Selected Areas in Cryptography.

4.

Z. Liu, H. Seo, J. GroBschadl and H. Kim. (2015). Reverse Product-Scanning Multiplication and Squaring on 8-bit AVR Processors (158-175). ICS.

5.

D. Hong, J.-H. Lee, D.-C. Kim, D. Kwon, K. H. Ryu and D.-G. Lee. (2014). LEA: A 128-bit block cipher for fast encryption on common processors (3-27). Information Security Applications.

6.

Z. Liu, H. Seo, J. GroBschadl and H. Kim. (2013). Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography for Sensor Nodes (302-317). ICICS2013.

7.

S. Kumar. Elliptic Curve Cryptography for Constrained Devices.

8.

NIST. Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths", NIST Special Publication 800-131A Rev.1.

9.

D. Hankerson, A. Menezes and S. Vanstone. Guide to Elliptic Curve Cryptography.

10.

Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters, SEC 2 (Draft) Ver. 2.0.

11.

J. S. Coron. (1999). Resistance Against Differential Power Analysis for Elliptic Curve Cryptosystems (292-302). CHES'99.

12.

M. Joye. (2008). Fast Point Multiplication on Elliptic Curves Without Precomputation (36-46). Arithmetic of Finite Fields (WAIFI 2008).

13.

Y. J. Yoon, S. W. Jung, S. Lee. (2004). Architecture for an Elliptic Curve Scalar Multiplication Resistant to Some Side-Channel Attacks (139-151). ICISC2003.

14.

E. Saas and C. K. Koc. (2000). The Montgomery Modular Inverse - Revisited. IEEE Trans. on Comp., 49(7), 763-766. 10.1109/12.863048.

15.

T. H. Kim and S. W. Jung. (2015). Implementation of a Software Test Bench for Developing Stage of a 224-bit ECDSA Hardware Architecture (108-109). ICIoTC2015.

16.

NIST. Security requirments for cryptographic modules, FIPS PUB 140-2.

17.

NIST. The FIPS 186-4 Elliptic Curve Digital Signature Algorithm Validation System(ECDSA2VS).

Journal of The Korea Internet of Things Society