Article Detail

Home > Article Detail
  • P-ISSN 1010-0695
  • E-ISSN 2288-3339

The Inhibitory Effect of Lycii Fructus on LPS-stimulated NF-κB Activation and iNOS Expression in RAW 264.7 Macrophages

Journal of Korean Medicine / Journal of Korean Medicine, (P)1010-0695; (E)2288-3339
2008, v.29 no.1, pp.47-59
Beum-Seuk Kim
Yun-Kyung Song
Hyung-Ho Lim
  • Downloaded
  • Viewed

Abstract

Objective:Anti-inflammatory effects of the extract of Lycii Fructus on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells were investigated. Method:In order to assess the cytotoxic effect of Lycii Fructus on the raw 264.7 macrophages 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay was performed. Reverse transcription-polymerase chain reaction(RT-PCR) analysis of the mRNA levels of tumor necrosis factor-α(TNF-α) and inducible nitric oxide synthase(iNOS) was performed in order to provide an estimate of the relative level of expression of these genes. The protein level of the inhibitor of nuclear factor-κB(IκB) and nuclear factor-κB(NF-κB) activity was investigated by Western blot assay. NO production was investigated by NO detection. Result:Lycii Fructus suppressed NO production by inhibiting the LPS-induced expressions of iNOS and TNF-ˉα mRNA and iNOS protein in RAW 264.7 macrophage cells. Also, Lycii Fructus suppressed activation of NF-κB in the nucleus. Conclusion:These results show that the extract of Lycii Fructus has anti-inflammatory effect probably by suppressing iNOS expressions through the down-regulation of NF-κB binding activity.

keywords
Lycii Fructus, lipopolysaccharide, nitric oxide, inducible nitric oxide synthase, NF-κB


Reference

1

1. Funayama S, Yoshida K, Konno H, Hikkino H. Structure of Kukoamine A, a hypotensive principle of Lycium chinense root bark. Tetrahedron Lett. 1980;21:1355-6.

2

2. Morota T, Sasaki H, Chin M, Sato T, Katayma N, Fukuyama K, Mitsuhashi H. Studies on the crude drug containing the angiotensin-I conve- rting enzyme inhibitors on the active principles of Lycium chinense Muller. Shoyakugaku Zasshi. 1987;41:169-73.

3

3. Luo Q, Cai Y, Yan J, Sun M, Corke H. Hypog- lycemic and hypolipidemic effects and antiox- idant activity of fruit extracts from Lycium barbarum. Life Sci. 2004;76:137-49.

4

4. Zhang KY, Leung HW, Yeung HW, Wong RN. Differentiation of Lycium barbarum from its related Lycium species using random amplified polymorphic DNA. Planta med. 2001;67:379-81.

5

5. Gan L, Zhang SH, Liu Q, Wu HB. A polysacc- aride-protein complex from Lycium barbarum upregulates cytokineexpression inhuman peri- pheral blood mononuclear cells. Eur J Pharmacol. 2003;471:217-22.

6

6. Gan L, Hua Zhang S, Liang Yang X, Bi Xu H. Immunomodualtion and antitumor activity by a polysaccharide-protein complex from Lycium barbarum. Int Immunopharmacol. 2004;4:563-9.

7

7. Lee DG, Park Y, Kim MR, Jung HJ, Seu YB, Hahm KS, Woo ER. Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense. Biotechnol Lett. 2004;26: 1125-30.

8

8. Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mecha- nism. J Immunol. 1992;149:2736-41.

9

9. Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, Liou S, Simmons D, Hwang D. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem. 1992; 267:25934-8.

10

10. Kubes P, McCafferty DM. Nitric oxide and intestinal inflammation. Am J Med. 2000;109 :150-8.

11

11. Vegeto E, Bonincontro C, Pollio G, Sala A, Viappiani S, Nardi F, Brusadelli A, Viviani B, Ciana P, Maggi A. Estrogen prevents the lipopolysaccharide-induced inflammatory res- ponse in microglia. J Neurosci. 2001;21:1809 -18.

12

12. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38:1285-91.

13

13. Bok JW, Lermer L, Chilton J, Klingeman HG, Towers GH. Antitumor sterols from the myc- elia of Cordyceps sinensis. Phytochemistry. 1999;51:891-8.

14

14. Watkins LR, Maier SF. The pain of being sick: implications of immune-to-brain communicat- ion for understanding pain. Annu Rev Psychol. 2000;51:29-57.

15

15. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992;6:3051-64.

16

16. Marino MW, Dunn A, Grail D, Inglese M, Noguchi Y, Richards E, Jungbluth A, Wada H, Moore M, Williamson B, Basu S, Old LJ. Characterization of tumor necrosis factor- deficient mice. Proc Natl Acad Sci USA. 1997;94:8093-8.

17

17. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas sign- aling mechanisms. Ann Rev Immunol. 1999; 17:331-67.

18

18. Ettinger R, Mebius R, Browning JL, Michie SA, van Tuijl S, Kraal G, van Ewijk W, McDevitt HO. Effects of tumor necrosis factor and lymphotoxin on peripheral lymphoid tissue development. Int Immunol. 1998;10:727-41.

19

19. Ma X. TNF-α and IL-12: a balancing act in macrophage functioning. Microbes Infect, 3 121-129. tumor necrosis factor-deficient mice. Proc Natl Acad Sci USA. 2001;94:8093-8.

20

20. Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Cruceta J, Graves BD, Einhorn TA. Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling. Cells Tissues Organs. 2001;169:285-94.

21

21. Wise GE, Yao S. Expression of tumor necrosis factor-alpha in the rat dental follicle. Arch Oral Biol. 2003;48:47-54.

22

22. Ghosh S, May MJ, Kopp EB. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225-60.

23

23. Tegeder I, Niederberger E, Israr E, Guhring H, Brune K, Euchenhofer C, Grosch S, Geisslinger G. Inhibition of NF-κB and AP-1 activation by R-and S-flurbiprofen. FASEB J. 2001;15:2-4.

24

24. Prabhu KS, Zamamiri-Davis F, Stewart JB, Thompson JT, Sordillo LM, Reddy CC. Selenium deficiency increases the expression of inducible nitric oxide synthase in Raw 264.7 macrophages: role of nuclear factor-κB in up-regulation. Biochem J. 2002;366:203-9.

25

25. Lee AK, Sung SH, Kim YC, Kim SG. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-α and COX-2 expression by sauchinone effects on I-κBα phosphorylation, C/EBP and AP-1 activation. Br J Pharmacol. 2003;139:11-20.

26

26. Griscavage JM, Wilk S, Ignarro LJ. Inhibitors of the proteasome pathway interfere with indu- ction of nitric oxide synthase in macrophages by blocking activation of transcription factor NF-κB. Proc Natl Acad Sci. 1996;93:3308-12.

27

27. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol. 2003; 54:469-87.

28

28. Baeuerle PA, Henkel T Function and activa- tion of NF-κB in immune system. Annu Rev Immunol. 1994;12:142-79.

29

29. Wie QA, Kashiwabara Y, Nathan C. Role of transcription factor NF-kappaB/Rel in induc- tion of nitric oxide synthase. J Biol Chem. 1994;269:4705-8

30

30. Alafuzoff I, Overmyer M, Helisalmi S, Soini- nen H. Lower counts of astroglia and activated microglia in patients with Alzheimer’s disease with regular use of non-steroidal anti-inflam- matory drugs. J Alzheimers Dis. 2000;2:37-46.

31

31. Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE. Inflammatory mechanisms in Alzheimer’s disease: inhibition of β-amyl- oid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists. J Neurosci. 2000;20:558-67.

32

32. Nakajima K, Kohsaka S. Microglia: activation and their significance in the central nervous system. J Biochem. 2001;130:169-75.

33

33. Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitoto- xicity by inhibiting activation and proliferation of microglia. J Neurosci. 2001;21:2580-8.

34

34. Tikka TM, Koistinaho JE. Minocycline provides neuroprotection against N-methyl-d-aspartate neurotoxicity by inhibiting microglia. J Immunol. 2001;166:7527-7533.

35

35. Lo AH, Liang YC, Lin-Shiau SY, Ho CT, Lin JK. Carnosol, an antioxidant in rosemary, sup- presses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. Carcinogenesis. 2002;23:983-91.

36

36. Shin KM, Park YM, Kim IT, Hong SP, Hong JP, Lee KT. In vitro antiinflammatory activity of Amygdalin in marcrohpage raw 264.7 cells. Kor J Pharmacogn. 2003;34:223-7.

37

37. Stuehr DJ, Cho HJ, Kwon NS, Weise MF, Nathan CF. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci USA. 1991; 88:7773-7.

38

38. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF, Wahl SM. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med. 1993;178:749-54.

39

39. Kleemann R, Rothe H, Kolb-Bachofen V, Xie QW, Nathan C, Martin S, Kolb H. Transcr- iption and translation of inducible nitric oxide synthase in the pancreas of prediabetic BB rats. FEBS Lett. 1993;328:9-12.

40

40. Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 1992;587:250-6.

41

41. Pahl HL. Activators and target genes of Rel/ NF-κB transcription factors. Oncogene. 1999; 18:6853-66.

42

42. Waddick KG, Uckun FM. Innovative treatment programs against cancer II. Nuclear factor-κ B(NF-κB) as a molecular target. Biochem Pharmacol. 1999;57:9-17.

43

43. Southan GJ, Szabo C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem Pharmacol. 1996;51:383-94.

44

44. Lo AH, Liang YC, Lin-Shiau SY, Ho CT, Lin JK. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-κB in mouse macrophages. Carcinogenesis. 2002;23: 983-91.

45

45. Mukaida N, Ishikawa Y, Ikeda N, Fujioka N, Watanabe S, Kuno K, Matsushima K. Novel insight into molecular mechanism of endotoxin shock: biochemical analysis of LPS receptor signaling in a cell-free system targeting NF-κB and regulation of cytokine production/action through β2 integrin in vivo. J Leukoc Biol. 1996;59:145-51.

46

46. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti- inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res. 2001;480-481: 243-68.

47

47. Baeuerle PA. IκB-NF-κB structures: at the interface of inflammation control. Cell. 1998; 95:729-31.

48

48. Kim SY, Lee EJ, Kim HP, Kim YC, Moon A, Kim YC. A novel cerebroside from Lycii Fructus preserves the hepatic glutathione redox system in primary cultures of rat hepatocytes. Biol Pharm Bull. 1999;22:873-5.

49

49. Go EK, Jung KJ, Kim JY, Yu BP, Chung HY. Betaine suppresses proinflammatory signaling during aging: the involvement of nuclear factor κB via nuclear factor-inducing kinase/IκB kinase and mitogen-activated protein kinases. J Gerontol A Biol Sci Med Sci. 2005;60:1252-64.

50

50. Jia W, Gao WY, Cui NQ, Xiao PG. Anti- inflammatory effects of an herbal medicine (Xuan-Ju agent) on carrageenan and adjuvant- induced paw edema in rats. J Ethnopharmacol. 2003;89:139-41.

  • Downloaded
  • Viewed
  • 0KCI Citations
  • 0WOS Citations

Other articles from this issue

Recommanded Articles

상단으로 이동

Journal of Korean Medicine