바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

선형절삭실험 중 디스크커터 축에 작용하는 하중과 온도에 대한 실험적 연구

A experimental study on the loads and temperature acting on the shaft of a disc cutter during linear rock cutting test

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2013, v.15 no.3, pp.237-251
최순욱 (한국건설기술연구원)
장수호 (한국건설기술연구원)
박영택 (한국건설기술연구원)
이규필 (한국건설기술연구원)
배규진 (한국건설기술연구원)
  • 다운로드 수
  • 조회수

초록

본 연구는 변형률게이지와 열전대, 적외선 열화상카메라를 사용하여 선형절삭실험 동안 디스크커터의 축에 발생하는 축응력과 토크를 측정하고 디스크커터의 내부와 외부의 온도를 파악하고자 하였다. 실험결과, 축응력과 토크의 최대값은 각각 11.3 MPa, 171 kN·m로 측정되었으며, 축응력과 토크는 회전력보다는 디스크커터의 연직력과 상관성이 높은 것으로 나타났다. 선형절삭실험 동안 열전대로 측정한 결과, 디스크커터의 온도변화는 0.2°C 이내로 나타났다. 그러나 수행된 각 선형절삭작업이 연속적으로 이루어진다고 가정한 다음, 디스크커터의 내부온도와 커터 링 표면의 온도변화를 추정한 결과, 커터간격이 70 mm인 경우에는 각각 0.1°C/m, 0.15~0.17°C/m로 예상되었고 커터간격이 90 mm인 경우에는 각각 0.09°C/m, 0.13~0.23°C/m로 추정되었다.

keywords
디스크커터, 커터작용력, 축응력, 토크, 온도, Disc cutter, Cutter force, Axial stress, Torque, Temperature

Abstract

This study aimed to estimate the axial stress and torque on a shaft in a disc cutter. The corresponding inner temperature and the surface temperature of a cutter ring were also measured by using strain gauges and thermocouples during the linear cutting tests. The maximum values of the axial stress and torque were recorded to 11.3 MPa, 171 kN․ m respectively. They have higher correlations with normal force rather than rolling force. The results of temperature measured by thermocouples during a linear cutting test showed that the rate of increase in temperature was below 0.2℃. When the cutter spacing is set to be 70 mm, the inner temperature and surface temperature of a disc cutter were 0.1℃/m, 0.15~0.17℃/m respectively. Similarly, when the cutter spacing is 90 mm, the temperature values were 0.09℃/m, 0.13~0.23℃/m respectively.

keywords
디스크커터, 커터작용력, 축응력, 토크, 온도, Disc cutter, Cutter force, Axial stress, Torque, Temperature

참고문헌

1.

1. Balci, C., Tumac, D. (2012), “Investigation into the effects of different rocks on rock cuttability by a V-type disc cutter”, Tunnelling and Underground Space Technology, Vol. 30, pp. 183-193.

2.

2. Chang, S.H., Choi, S.W., Lee, G.P., Bae, G.J. (2011), “Rock TBM design model derived from the multi-variate regression analysis of TBM driving data”, Journal of Korean Tunnelling and Underground Space Association, Vol. 13, No. 6, pp. 531-555.

3.

3. Chang, S.H., Choi, S.W., Park, Y.T., Lee, G.P., Bae, G.J. (2012), “Characterization of the deformation of a disc cutter in linear rock cutting test”, Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 3, pp. 197-213.

4.

4. Entacher, M., Winter, G., Bumberger, T., Decker, K., Godor, I., Galler, R. (2012), “Cutter force measurement on tunnel boring machines-System design”, Tunnelling and Underground Space Technology, Vol. 31, pp. 97-106.

5.

5. KTA (2008), “Mechanized tunneling technologydesign”, Korean Tunneling Association, CIR, pp. 261, 278.

6.

6. Rostami, J., Ozdemir, L. (1993) “A new model for performance prediction of hard rock TBMs”, Proceedings of Rapid Excavation and Tunneling Conference (RETC), Boston, 13-17 June, pp 793- 809

7.

7. Rostami, J., Ozdemir, L., Nilsen, B. (1996) “Comparison Between CSM and NTH Hard Rock TBM Performance Prediction Models”, Proceedings of Annual Technical Meeting of the Institute of Shaft Drilling and Technology (ISDT), Las Vegas, NV, pp. 11.

8.

8. Rostami, J. (1997), “Development of a force estimation model for rock fragmentation with disc cutters through theoretical and physical measurement of crushed zone pressure”, Ph.D Dissertation, Colorado School of Mines, Golden, Colorado, pp. 68-69.

9.

9. Roxborough, F.F., Phillips, H.R. (1975), “Rock Excavation by Disc Cutter”, International Journal of Rock Mechnics and Mining Sciences and Geomechanics Abstracts, Vol. 12, pp. 361-366.

10.

10. Shanahan, A., Box, Z. (2011), “TBM Cutter Instrumentation at Malaysia’s Pahang Selangor Water Tunnel and Canada’s Niagara Tunnel Project”, Proceedings of the World Tunneling Congress (WTC) 2011, Helsinki, Finland.

(사)한국터널지하공간학회