바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Vol.18 No.4

초록보기
Abstract

This article is to apply the tunnel support system selected after comparatively analyzing of RMR and tunnel instrumentation between the tunnel behavior characteristic predicted through geotechnical investigations and the numerical analysis at the design stage and the properties deformation occurred at the construction stage. This attempt results from the behavior characteristic of the tunnel excavation ground shown differently in accordance with the ground quality and reinforcement method. This, therefore, provide the data and results analysed the actual decision RMR-crown settlement & convergence and reduction of material property of ground as parameters. Also, it’s shown that the tunnel designer is able to predict tunnel behavior characteristic when designing in bedrock areas excessively distributed faults and fractured zones.

초록보기
Abstract

Recently, a 3,250 meter-long tunnel was constructed beneath the sea bed formed of composite sedimentary soils to transport reusable waste heat gas of industrial complex in the west coast of Korea. Some risks such as machine settlement always exist due to the uncertainties of geological and construction factors during the subsea shield TBM tunnelling. In this construction site, the deviation of tunnel alignment caused by shield TBM settlement was occurred during excavation. It was examined that the lack of bearing capacity of soft clay was a main cause. This paper evaluates the risk of shield TBM tunnelling considering the ground conditions. Correlation between machine settlement and its advance rate was evaluated through the analytical equation in which bearing capacity is considered and a 3-D numerical analysis which can simulate the TBM advance condition (in other words, the dynamic condition). It was found out that a shield TBM could settle due to the insufficient bearing capacity of soft clay layers. In order to prevent such the problem, the best advance rate proper to the ground characteristics is needed to be applied. In the ground conditions of the section of interest, it was turned out that if the shield TBM advance rate was maintained between 35 mm/min and 40 mm/min, the machine settlement could be avoided.

초록보기
Abstract

Population of urban areas is rapidly increased due to urbanization. This situation leads to lack of surface space. So, underground space has been developed for resolving the problem of congested urban areas. Many studies have researched for this situation. However, previous studies mainly focused on behaviour of structures. Researches about behaviour of soil are lacked. For this reason, this study has investigated interactive behaviour between embedded pile and its surrounding ground due to tunnelling. Soil deformation is observed by the close range photogrammetric method and image processing in the model test. These data are compared with numerical analysis.

(사)한국터널지하공간학회