바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

지반 및 라이닝 열화 계측 정보를 반영한 해저 터널의 안정성 평가

Estimation of subsea tunnel stability considering ground and lining stiffness degradation measurements

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2016, v.18 no.5, pp.389-399
https://doi.org/10.9711/KTAJ.2016.18.5.389
안준상 (인하대학교)
김병찬 (한양대학교)
문현구 (한양대학교)
송기일 (인하대학교)
  • 다운로드 수
  • 조회수

초록

해저 터널의 안정성 평가는 계측 변위 이외에도 응력, 수압 그리고 지반강성(열화) 등 다른 계측 정보를 사용해서 역해석 알고리즘에 반영하면, 그 효율성이 증대될 수 있다. 본 연구에서는 FLAC3D 프로그램에 내장된 FISH 언어를 사용해서, 기 구축된 변위-응력 기반의 차분진화 알고리즘을 수정 및 확장하였다. 확장된 차분진화 알고리즘에는 변위, 응력 정보 외에도 수압 및 지반 및 라이닝 열화 정보도 입력 인자로 사용되었다. 해저 터널 안정성 평가에 추가적인 계측 정보를 활용하면, 터널 역해석에 대한 오차율이 감소함을 확인할 수 있었다.

keywords
Stiffness degradation (Ground, Lining), Differential evolution algorithm (DEA), Subsea tunnel, 강성 열화(지반, 라이닝), 차분진화 알고리즘(DEA), 해저 터널

Abstract

Efficiency for estimation of subsea tunnel safety can be increased through reflecting back analysis algorithm to displacement measurements besides other measurement information such as stress, water pressure and ground stiffness degradation. In this study, the finite difference code FLAC3D built-in FISH language is used. In addition, the stability of the tunnel lining will be evaluated from the development of displacement-based algorithm and its expanded algorithm with conformity of several parameters such as stress measurements, water pressure measurements, tunnel lining degradation measurements and ground stiffness degradation measurements. By using additional measurement information to assess the stability of subsea tunnel, it was confirmed that the error rate is reduced to the tunnel back analysis.

keywords
Stiffness degradation (Ground, Lining), Differential evolution algorithm (DEA), Subsea tunnel, 강성 열화(지반, 라이닝), 차분진화 알고리즘(DEA), 해저 터널

참고문헌

1.

1. An, J.S., Kim, B.C., Moon, H.K., Song, K.I., Su, G.S. (2016), “DEA optimization for operating tunnel back analysis”, Journal of Korean Tunn Undergr Sp Assoc, Vol. 18, No. 2, pp. 183-193.

2.

2. An, J.S., Lee, S.H., Lee, H.R., Song, K.I. (2015), “Application of differential evolution algorithm for tunnel back analysis: Feasibility study”, Korean Tunnelling and Underground Space Association. KTA 2015 Fall Symposium, pp. 157-158.

3.

3. Deutsche Bahn, A.G. (2007), “Richtlinie 853-Eisenbahntunnel planen, bauen und instand halten”, Frankfurt am Main.

4.

4. Guan, Z., Jiang, Y., Tanabashi, Y. (2008), “Rheological parameter estimation for the prediction of long-term deformations in conventional tunnelling”, Tunnelling and Underground Space Technology, Vol. 24, No. 3, pp. 250-259.

5.

5. Han, Y.C., Jeong, S.S. (2014), “A Study on the Concrete Lining Behavior due to Tunnel Deterioration”, Journal of the Korean Geotechnical Society, Vol. 30, No. 4, pp. 21-34.

6.

6. Hwang, H.S. (2002), “Function optimization and event clustering by adaptive differential evolution”, Journal of Korean Institute of Intelligent Systems, Vol. 12, No. 5, pp. 451-461.

7.

7. Itasca Consulting Group, Inc. (2012), FLAC3D-Fast Lagrangian Analysis of Continua in 3 Dimensions. Version 5.0. User Manual, Minnesota, USA.

8.

8. Kim, J.W., Hong, E.S., Cho, G.C. (2016), “Assessment of elastic-wave propagation characteristics in groutingimproved rock mass around subsea tunnels”, Journal of Korean Tunn Undergr Sp Assoc, Vol. 18, No. 2, pp. 235-244.

9.

9. Ladanyi, B. (1974), “Use of the long-term strength concept in the determination of ground pressure on tunnel linings”, Proceedings of the 3rd international congress on rock mechanics, National Academy of Sciences, Denver, pp. 1150-1156.

10.

10. Lee, J.H., Akutagawa, S. (2009), “Quick prediction of tunnel displacements using Artificial Neural Network and field measurement results”, International Journal of the JCRM, Vol. 5, No. 2, pp. 53-62.

11.

11. Lenz, F., Marcher, T. Neumayr, T. (2010), “A9Bosruck Tunnel-design approaches for swelling rock”, Geomechanics and Tunnelling, Vol. 3, Issue 5, pp. 597-608.

12.

12. Marcher, T. (2011), “Tunnel Design and Construction Practice: Technical Solutions in Swelling Ground”, Workshop UPC: Tunnelling through Saline and Swelling Ground, iLF Consulting Engineers.

13.

13. Matsunaga, T. (2008), “Study on Prediction of Tunnel Deformation and Rationalization of Measures”, PhD These, Kyoto University (in Japanese).

14.

14. Park, E.S., Shin, H.S., Cheon, D.S., Jung., Y.B. (2013), “Management and concept of the monitoring system considering the characteristics of subsea tunnels”, Journal of Korean Tunn Undergr Sp Assoc, Vol. 15, No. 5, pp. 523-536.

15.

15. Sandrone, F., Labiouse, V. (2010), “Analysis of the evolution of road tunnels equilibrium conditions with a convergence-confinement approach”, Rock mechanics and rock engineering, Vol. 43, No. 2, pp. 201-218.

16.

16. Sato, M., Kamemura, K. (1984), “A Study on Time Dependency of Rock Strength”, Japanese Geotechnical Society, Vol.19, pp. 783-784 (in Japanese).

17.

17. Storn, R., Price, K. (1997), “Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces”, Journal of Global Optimization, Vol. 11, No. 4, pp. 341-359.

18.

18. Su, G.S., Zhang, X.F., Chen, G.Q., Fu, X.Y. (2008), “Identification of structure and parameters of rheological constitutive model for rocks using differential evolution algorithm”, Journal of Central South University of Technology, Vol. 15, Issue 1, pp. 25-28.

19.

19. Vardakos, S., Gutierrez, M., Xia, C. (2012), “Parameter identification in numerical modeling of tunneling using the Differential Evolution Genetic Algorithm (DEGA)”, Tunnelling and underground space technology, Vol. 28, pp. 109-123.

20.

20. Yokozeki, K., Watanabe, K., Sakata, N., Otsuki, N. (2004), “Modeling of leaching from cementitious materials used in underground environment”, Applied Clay Science, Vol. 26, Issues 1-4, August 2004, pp. 293-308.

(사)한국터널지하공간학회