바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

축소모형실험을 통한 급곡선 터널에서의 Shield TBM 추진 압력 적용 기술에 대한 연구

Application technique on thrust jacking pressure of shield TBM in the sharp curved tunnel alignment by model tests

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2017, v.19 no.2, pp.335-353
https://doi.org/10.9711/KTAJ.2017.19.2.335
강시온 (호서대학교 토목공학과)
김협 (호서대학교 토목공학과)
김용민 (호서대학교 토목공학과)
김상환 (호서대학교)
  • 다운로드 수
  • 조회수

초록

본 연구는 축소모형 실험을 통하여 급곡선 터널에서의 쉴드 TBM 추진압력 적용 기술에 대한 논문이다. 최근 한국의 도심지 지역에서 NATM 터널 공사에 발생하는 진동 및 소음 문제를 예방하기 위해 기계식 터널공법인 쉴드 TBM 공법의적용이 증가하고 있다. 그러나 건물 기초 및 지하 구조물을 피하기 위해 터널 선형이 급곡선으로 계획하여야 하며 쉴드TBM 추진압력 시스템에 대한 적용 기술의 개발이 요구된다. 따라서 곡선구간에 대한 쉴드 TBM 굴진 시 영향을 주는주요 요소들에 대하여 시공자료와 이론적 접근방법에 대하여 검토 및 분석을 실시하였다. 분석결과로부터 쉴드 TBM 추진압력 시스템에 대한 기술이 급곡선 터널에 있어서 가장 중요한 것으로 나타났다. 또한 지반과 쉴드 TBM 헤드부의 상호 거동에 대한 실질적인 상황을 시뮬레이션 하기 위하여 축소모형시험을 실시하였다. 2가지의 서로 다른 쉴드 추진력과여러 중절각도에 따라 쉴드 TBM 헤드에 가해지는 지반압력에 대하여 측정하였다. 이 실험으로부터 얻어진 결과를 분석하였다. 이들 결과는 급곡구간 터널에서 쉴드 TBM 추진 압력에 따른 쉴드 TBM 헤드부의 상호거동에 대한 이해와 운영기술 발전에 매우 유용할 것이다.

keywords
쉴드 TBM, 급곡선 터널, 쉴드잭, 중절잭, 축소모형실험, Shield TBM, Sharp curved tunnel, Shield jack, Articulation jack, Scaled model test

Abstract

This paper presents the application technique on thrust jacking pressuring of shield TBM in the sharp curved tunnel alignment by model tests. In recent the application of the shield TBM method as mechanized tunnelling is increasing to prevent the vibration and noise problems occurring to the NATM tunnel construction at the urban area in Korea. It is, however, necessary to plan the sharp curved tunnel alignment in order to avoid the building foundation and underground structure, to develop the shield TBM operation technique in the shape curved tunnel alignment. Therefore, the main operation parameters of shield TBM in the curved tunnel alignment are reviewed and analyzed based on the case study and analytical study. The results show that the operation of shield jacking force system is a most important technique in the shape curved tunnel alignment. The simplified scaled model tests are also carried out in order to examine the ground-shield TBM head behaviour. The earth pressures acting on the shield TBM head are investigated according to two different shield jacking force systems (uniform and un-uniform pressure) and several articulation angles. The results obtained from the model tests are analysed. These results will be very useful to understand the shield TBM head interaction behaviour due to the shield jacking operation technique in the shape curved tunnel alignment, and to develop the operation technique.

keywords
쉴드 TBM, 급곡선 터널, 쉴드잭, 중절잭, 축소모형실험, Shield TBM, Sharp curved tunnel, Shield jack, Articulation jack, Scaled model test

참고문헌

1.

1. Chang, S.H., Choi, S.W., Park, Y.T., Lee, G.P., Bae, G.J. (2013), “Experimental evaluation of the effects of cutting ring shape on cutter acting forces in a hard rock”, Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 3, pp. 225-235.

2.

2. Cho, J.W., Yu, S.H., Jeon, S.K., Chang, S.H. (2008), “Numerical study on rock fragmentation by TBM disk cutter”, Journal of Korean Tunnelling and Underground Space Association, Vol. 10, No. 2, pp. 139-152.

3.

3. Kang, E.M., Kim, Y.M., Hwang, I,J., Kim, S.H. (2015), “A study on the damage of cutter bit due to the rotation speed of shield TBM cutter head in mixed ground”, Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 3, pp. 403-413.

4.

4. Kim, S.H., Kim W.K., Lee, H.Y. (2013), “Effect of Segment thickness during Shield TBM tunnelling in case study”, Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 3, pp. 311-320.

5.

5. Kim, H., Yoon, H.D., Jeon, S.I., Yoon, Y.J., (2002), “The case study on a sharp turn of large diameter shield tunnel”, Proceedings of Symposium on the Mechanized Tunnelling Techniques, Seoul, pp. 79-90.

6.

6. Yoo, K.H., Hwang, D.Y., Chung, S.G., (2007), “A study on engineering characteristics of weak rock ground happened tbm jamming accident in tunnelling”, Journal of the Korean Society of Civil Engineers, Vol. 27, No. 6, pp. 373-381.

7.

7. Yun, D.S., Kim, J.H., Choi, S.C., Lee, M.J., (2011), “A case for domestic development of shield machine and construction”, Proceedings of The 12th KTA International Symposium on Mechanized Tunnelling Technology, Seoul, pp. 169-180.

8.

8. Lee, W.G., Kim, H.I., Jung, B.C., Kim, J.I., Woo, H., (2008), “A construction plan of double shield tbm in steep tunnel and fault zone”, Proceedings of The 9th KTA International Symposium on Mechanized Tunnelling Technology, Seoul, pp. 225-236.

9.

9. Lim, Y.D., Cho, D.H., Jeon, Y.J., Ryu, J.Y., (2008), “Troubles and improvements of cable structure design”, Proceedings of The 9th KTA International Symposium on Mechanized Tunnelling Technology, Seoul, pp. 37-107.

10.

10. Korean Tunnelling Association (2008), Mechanized tunnelling method : design, CIR, Seoul, pp. 85-107.

11.

11. Korean Tunnelling Association (2015), Standard specification of tunnelling, CIR, pp. 110-115 .

12.

12. Broere, W., Faassen, T.F., Arends, G., van Tol, A.F., (2007), “Modelling the boring of curves in (very)soft soils during microtunnelling”, Tunnelling and Underground Space Technology, Vol. 22, Issures 5-6, pp. 600-609.

13.

13. Kongshu, D., Xiaoqiang, T., Liping W., Xu, C., (2011), “Force transmission characteristics for the nonequidistant arrangement thrust systems of shield tunneling machines”, Automation in Construction, Vol. 20, pp. 588-595.

14.

14. Sugimoto, Sramoon, A., Konishi, S., Sato, Y., (2007), “Simulation of Shield Tunneling Behavior along a Curved Alignment in a Multilayered Ground”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, Issue 6, pp. 684-694.

(사)한국터널지하공간학회