바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

A study on the program development for area optimizing of damper ports in road tunnels with transverse ventilation system

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2019, v.21 no.1, pp.177-188
https://doi.org/10.9711/KTAJ.2019.21.1.177





Abstract

The purpose of the optimization of the installation of supply/exhaust ports for tunnels with transverse ventilation system is to supply fresh air from outside to inside of tunnels uniformly and exhaust pollutant from tunnels properly for creating safe and clean environment for tunnel users. For this purpose, a ventilation port area optimization program was developed to obtain a uniform supply or exhaust air volume inside a great depth double deck tunnel with transverse ventilation system. In order to area optimize the developed port sizing program, the wind velocity was measured in the duct of the currently operated tunnel with semi-transverse ventilation. Also 3D cfd was performed on the same tunnel and cfd results were compared to the measured value. As a result, the error rate between the predicted value from the program and measured value was 6.72%, while the error rate between the predicted value from the program and 3D cfd analysis value was 4.86%. Both of comparison results show less than 10% of error rate. Thus It is expected that supply/exhaust port optimization design of transverse ventilation tunnel can be possible with using this large exhaust port area optimization program.

keywords
Transverse ventilation system, Uniform supply, Double deck tunnel, The error rate, Port optimization design, 횡류식 환기, 균일 급기, 복층 터널, 오차율, 포트 최적화 설계

Reference

1.

1. Bickel, J.O., Kuesel, T.R., King, E.H. (1996), Tunnel Engineering Handbook, 2nd, Chapman & Hall, New York, pp. 384-438

2.

2. Jo, H.J., Chun, K.M., Min, D.K., Kim, J.W., Beak, J.H. (2016), “A fundamental study for optimizing the supply and exhaust port opening ratio in road tunnels with transverse ventilation system”, Journal of the Korean Society of Mineral and Energy Resources Engineers, Vol. 53, No. 2, pp. 140-148.

3.

3. Jo, H.J., Chun, K.M., Min, D.K., Kim, J.W., Beak, J.H. (2017), “A study on the program development for optimizing the supply and exhaust port opening ratio in road tunnels with transverse ventilation system”, Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 3, pp. 517-532.

4.

4. MOLIT (1999), Road design manual part 6 tunnel, 618 ventilation equipments, Ministray of Land, Infrastructure and Transport, pp. 88.

5.

5. Ryu, J.O., Kim, J.S., Rie, D.H. (2016), “Numerical study on the supply and exhaust port size and fire management method in the semi-transverse ventilation system for road tunnel”, Journal of Korean Institute of Fire Science & Engineering, Vol. 30, No. 2, pp. 68-74.

(사)한국터널지하공간학회