바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

초고층 건물과 인접지하구조물의 SSI 해석을 통한 수치해석 프로그램 비교 연구

A comparative study on the numerical analysis program by SSI analysis of a high-rise building and an adjacent underground structure

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2019, v.21 no.2, pp.211-225
https://doi.org/10.9711/KTAJ.2019.21.2.211
유광호 (수원대학교)
  • 다운로드 수
  • 조회수

초록

최근 우리나라 전 지역에서 지진이 발생하고 이에 각 분야에서의 내진해석 연구가 활발히 진행되고 있고 지반을 고려하는 SSI 해석 연구 또한 지속적으로 수행되고 있다. 하지만 지반을 고려한 대부분의 기존 동적해석의 경우, 수치해석 방법에 따른 건물의 동적거동에 대한 비교 ‧ 분석이 부족한 실정이다. 따라서 본 연구에서는 초고층 건물을 대상으로 유한요소 프로그램인 MIDAS GTS NX와 유한차분 프로그램인 FLAC 2D를 사용하여 동적해석을 수행하고, 결과를 비교 ‧ 분석하고자하였다. 연구 결과, 건물 지상 및 지하부의 휨응력의 경우 최대 압축 및 인장 모두 MIDAS GTS NX가 FLAC 2D보다 다소 크게 발생하였지만, 최대 수평변위값 및 분포양상, 취약부의 위치는 유사하게 나타났다. 따라서 동적해석을 위해 사용자의 편의에따라 유한요소법이나 유한차분법에 근거한 프로그램 중 어느 것을 사용해도 차이가 없음을 확인하였다.

keywords
유한요소법, 유한차분법, 지반-구조물 상호작용, 초고층 건물, Finite element method, Finite difference method, SSI, High-rise building

Abstract

Recently, earthquakes have occurred throughout the entire region of Korea and seismic analysis studies have been actively conducted in various fields. SSI analyses studies considering ground have been carried out consistently. However, few comparative analyses have been performed on the dynamic behavior of buildings according to numerical analysis method in the case of the previous dynamic analyses considering grounds. Therefore, in this study, the dynamic analyses were performed on a high-rise building by using both a finite element program MIDAS GTS NX and a finite difference program FLAC 2D. The results were compared and analyzed each other. As a result, both the maximum compressive and tensile bending stresses of above ground and below ground part were estimated to be a little larger by MIDAS GTS NX than by FLAC 2D. However, the maximum horizontal displacement value, the horizontal displacement distribution, and the position of weak part were turned out to be similar in both analysis programs. Therefore, it can be concluded that there is no difference in using either a finite element program or a finite difference program for the convenience of a user for a dynamic analysis.

keywords
유한요소법, 유한차분법, 지반-구조물 상호작용, 초고층 건물, Finite element method, Finite difference method, SSI, High-rise building

참고문헌

1.

1. Byun, S.H., Jeong, J.H., Jun, D.C., Shin, I.J., Sim, D.H. (2011), “A case study on M & E design for double-deck tunnel in urban area”, Tunnel and Underground Space, Vol. 21, No. 4, pp. 281-286.

2.

2. Korea Expressway Corporation (2012), The road tunnel jet fan calculation standards for smoke control improvement of final study report, South Korea, pp. 32-33.

3.

3. Launder, B.E., Spalding, D.B. (1974), “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, pp. 269-289.

4.

4. Ministry of Land (2015), Guidelines for the installation and management of road tunnel emergency facilities, South Korea, pp. 54.

5.

5. PIARC (1999), Fire and smoke control in road tunnels PIARC, 05.05.BEN, 2-84060-064-1, World Road Association, pp. 63-65.

6.

6. Yoo, J.O., Kim, H.G. (2018), “A study on the ventilation characteristics and design of transverse ventilation system for road tunnel”, Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 2, pp. 305-315.

7.

7. Yoo, J.O., Kim, J.S., Rhee, L.S. (2017), “An analytical study on the fire characteristics of the small tunnel with large smoke exhaust port”, Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 3, pp. 375-388.

8.

8. Yoo, J.O., Kim, J.S., Rie, D.H., Shin, H.J. (2015), “The effect of a risk factor on quantitative risk assessment in railway tunnel”, Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 2, pp. 117-125.

(사)한국터널지하공간학회