바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

토사터널의 쉴드 TBM 데이터 시계열 분석을 통한 막장 전방 예측 연구

A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2019, v.21 no.2, pp.227-242
https://doi.org/10.9711/KTAJ.2019.21.2.227
정지희 (고려대학교)
김병규 (고려대학교)
정희영 (고려대학교)
김해만 (고려대학교)
이인모 (고려대학교)
  • 다운로드 수
  • 조회수

초록

토압식(Earth Pressure-Balanced, EPB) 쉴드 TBM 기계데이터 분석을 통해 토사터널의 특징이 반영된 막장 전방 예측방법을 제안하였다. 기존에 암반과 토사가 혼합된 복합 지반의 예측에 적용하였던 시계열 분석 모델을 토사터널에 적용가능하도록 수정하였다. 또한 수정된 모델을 사용하여, 토사 종류에 따라 쏘일 컨디셔닝 재료를 선택하는 것이 타당한지연구하였다. 이를 위해 Self-Organizing Map (SOM) 군집화(clustering) 분석을 수행하였다. 그 결과 무엇보다도 지반타입이 #200체 통과량 35% 기준으로 분류되어야 한다는 것을 확인하였다. 또한 TBM 기계데이터 분석을 통해 수정된모델이 지반 타입을 예측하는데 사용될 수 있음을 확인하였다. 수정된 기준에 따라 지반 타입을 분류하고 시계열 분석을수행하면, 10막장 전방 지반에 대해서 98%의 높은 예측 정확도를 보였으며, 이를 통해 수정된 방법의 우수성이 입증되었다. 특히 지반 타입 변화 구간에 대한 예측 정확도도 약 93%로, 10막장 전방에서 지반 타입 변화 여부를 미리 확인할수 있게 되었다

keywords
인공신경망, ARIMA 모델, 시간지연신경망, 막장 전방 예측, 토압식 쉴드 TBM, Artificial neural network (ANN), Autoregressive integrated moving average (ARIMA) model, Time delay neural network (TDNN), Ground condition prediction, Earth pressure-balanced (EPB) shield TBM

Abstract

This paper presents a method to predict ground types ahead of a tunnel face utilizing operational data of the earth pressure-balanced (EPB) shield tunnel boring machine (TBM) when running through soil ground. The time series analysis model which was applicable to predict the mixed ground composed of soils and rocks was modified to be applicable to soil tunnels. Using the modified model, the feasibility on the choice of the soil conditioning materials dependent upon soil types was studied. To do this, a self-organizing map (SOM) clustering was performed. Firstly, it was confirmed that the ground types should be classified based on the percentage of 35% passing through the #200 sieve. Then, the possibility of predicting the ground types by employing the modified model, in which the TBM operational data were analyzed, was studied. The efficacy of the modified model is demonstrated by its 98% accuracy in predicting ground types ten rings ahead of the tunnel face. Especially, the average prediction accuracy was approximately 93% in areas where ground type variations occur.

keywords
인공신경망, ARIMA 모델, 시간지연신경망, 막장 전방 예측, 토압식 쉴드 TBM, Artificial neural network (ANN), Autoregressive integrated moving average (ARIMA) model, Time delay neural network (TDNN), Ground condition prediction, Earth pressure-balanced (EPB) shield TBM

참고문헌

1.

1. Beale, M.H., Hagan, M.T., Demuth, H.B. (2016), Neural network toolbox™user’s guide, version R2016a, The Math Works, Inc., Natick.

2.

2. Box, G.E.P., Jenkins, G.M. (1970), Time series analysis: forecasting and control, Holden-Day, San Francisco.

3.

3. Buduma, N., Locascio, N. (2017), Fundamentals of deep learning: designing next-generation machine intelligence algorithms (1st edition), O’Reilly Media, Sebastopol.

4.

4. Chung, H., Lee, I.M., Jung, J.H., Park, J. (2019), “Bayesian networks-based shield TBM risk management system: methodology development and application”, KSCE Journal of Civil Engineering, Vol. 23, No. 1, pp. 452-465.

5.

5. Dorffner, G. (1996), “Neural networks for time series processing”, Neural Network World, Vol. 6, No. 4, pp. 447-468.

6.

6. Han, H.Y. (2009), Pattern recognition, Hanbit Media, Inc., Seoul.

7.

7. Hassoun, M.H. (1995), Fundamentals of artificial neural networks, MIT Press, Cambridge.

8.

8. IBM Corp. (2016), IBM SPSS Forecasting 24, IBM Corp., New York.

9.

9. Jung, J.H., Chung, H., Kim, T.H., Lee, I.M. (2018). “A hybrid time series model to predict ground conditions ahead of tunnel face utilizing shield TBM operational data”, Tunnelling and Underground Space Technology, Under Review.

10.

10. Kim, P. (2017), MATLAB deep learning: with machine learning, neural networks and artificial intelligence, Apress, New York, p. 53-80.

11.

11. Kim, S.P. (2016), Deep learning for beginners, Hanbit Media, Inc., Seoul.

12.

12. Kim, T.H., Kwon, Y.S., Chung, H., Lee, I.M. (2018), “A simple test method to evaluate workability of conditioned soil used for EPB Shield TBM”, Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 6, pp. 1049-1060.

13.

13. Lee, I.M. (2016), Geotechnical aspects of tunnelling (3rd edition), CIR, Seoul, pp. 129-176.

14.

14. Lee, W.W. (2011), Time series analysis: Statistical method for predicting, Freedom Academy Inc., Paju.

15.

15. Patterson, D.W. (1995), Artificial neural networks: theory and applications, Springer, New York, pp. 1-179.

16.

16. Ripley, B.D. (1996), Pattern recognition and neural networks, Cambridge University Press, New York.

17.

17. Shin, C.H., Jeong, S.H. (2011), “A study on application of ARIMA and neural networks for time series forecasting of port traffic”, Journal of Navigation and Port Research, Vol. 35, No. 1, pp. 83-91.

18.

18. Taylor, K. (2017), Deep learning using MATLAB neural network applications, CreateSpace Independent Publishing Platform, Lavergne.

19.

19. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.J. (1989), “Phoneme recognition using time delay neural networks”, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 3, pp. 328-339.

20.

20. Zumsteg, R., Langmaack, L. (2017), “Mechanized tunneling in soft soils: choice of excavation mode and application of soil-conditioning additives in glacial deposits”, Engineering, Vol. 3, No. 6, pp. 863-870.

(사)한국터널지하공간학회