바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Study on the effective parameters and a prediction model of the shield TBM performance

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2019, v.21 no.3, pp.347-362
https://doi.org/10.9711/KTAJ.2019.21.3.347




Abstract

Underground excavation using TBM machines has been increasing to reduce complaints caused by noise, vibration, and traffic congestion resulted from the urban underground construction in Korea. However, TBM excavation design and construction still need improvement because those are based on standards of the technologically advanced countries (e.g., Japan, Germany) that do not consider geological environment in Korea at all. Above all, although TBM performance is a main factor determining the TBM machine type, duration and cost of the construction, it is estimated by only using UCS (uniaxial compressive strength) as the ground parameters and it often does not match the actual field conditions. This study was carried out as part of efforts to predict penetration rate suitable for Korean ground conditions. The effective parameters were defined through the correlation analysis between the penetration rate and the geotechnical parameters or TBM performance parameters. The effective parameters were then used as variables of the multiple regression analysis to derive a regression model for predicting TBM penetration rate. As a result, the regression model was estimated by UCS and joint spacing and showed a good agreement with field penetration rate measured during TBM excavation. However, when this model was applied to another site in Korea, the prediction accuracy was slightly reduced. Therefore, in order to overcome the limitation of the regression model, further studies are required to obtain a generalized prediction model which is not restricted by the field conditions.

keywords
TBM 굴진성능, 굴진율, 일축압축강도, 암반특성, 회귀분석, TBM performance, Penetration rate, Uniaxial compressive strength, Rock mass properties, Regression analysis

Reference

1.

1. Armetti, G., Migliazza, M.R., Ferrari, F, Berti, A., Padovese, P. (2018), “Geological and mechanical rock mass conditions for TBM performance prediction. The case of “La Maddalena” exploratory tunnel, Chiomonte (Italy)”, Tunnelling and Underground Space Technology, Vol. 77, pp. 115-126.

2.

2. Barton, N. (1999), “TBM performance estimation in rock using QTBM”, Tunnels and Tunnelling International, Vol. 31, No. 9, pp. 30-34.

3.

3. Benato, A., Oreste, P. (2015), “Prediction of penetration per revolution in TBM tunneling as a function of intact rock and rock mass characteristics”, International Journal of Rock Mechanics and Mining Sciences, Vol. 74, pp. 119-127.

4.

4. Von Preinl, Z.T., Tamames, B.C., Fernandez, J.M., Hernandez, M.A. (2006), “Rock mass excavability indicator: New way to selecting the optimum tunnel construction method”, Tunnelling and Underground Space Technology, Vol. 21, pp. 237.

5.

5. Bruland, A. (1998), Hard rock tunnel boring - background and discussion, Doctoral Theses, NTNU, pp.81.

6.

6. Chang, S.H., Choi, S.W., Bae, G.J., Jeon, S. (2007), “A parametric study of rock properties and mechanical cutting conditions for deriving an optimum design model of a TBM cutterhead equipped with disc cutters”, Journal of the Korean Society of Civil Engineers, Vol. 27, No. 1C, pp. 87-98.

7.

7. Chang, S.H., Choi, S.W., Lee, G.P., Bae, G.J. (2011), “Rock TBM design model derived from the multi-variate regression analysis of TBM driving data”, Journal of Korean Tunnelling and Underground Space Association, Vol. 13, No. 6, pp. 531-555.

8.

8. Chang, S.H., Choi, S.W., Park, Y.T., Lee, G.P., Bae G.J. (2012), “Characterization of the deformation of a disc cutter in linear rock cutting test”, Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 3, pp. 197-213.

9.

9. Chang, S.H., Choi, S.W., Park, Y.T., Lee, G.P., Bae, G.J. (2013), “Experimental evaluation of the effects of cutting ring shape on cutter acting forces in a hard rock”, Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 3, pp. 225-235.

10.

10. Delisio, A., Zhao, J. (2014), “A new model for TBM performance prediction in blocky rock conditions”, Tunnelling and Underground Space Technology, Vol. 43, pp. 440-452.

11.

11. Farmer, I.W., Glossop, N.H. (1980), “Mechanics of disc cutter penetration”, Tunnels and Tunnelling, Vol. 12, No. 6, pp. 22-25.

12.

12. Graham, P.C. (1976), Rock exploration for machine manufacturers, Exploration for Rock Engineering, Balkema, Johannesburg, pp. 173-180.

13.

13. Hamidi, J.K., Shahriar, K., Rezai, B., Rostami, J. (2010), “Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system”, Tunnelling and Underground Space Technology, Vol. 25, No. 4, pp. 333-345.

14.

14. Hassanpour, J., Rostami, J., Zhao, J. (2011), “A new hard rock TBM performance prediction model for project planning”, Tunnelling and Underground Space Technology, Vol. 26, No. 5, pp. 595-603.

15.

15. Hughes, H.M. (1986), “The relative cuttability of coal measures stone”, Mining Science and Technology, Vol. 3, No. 2, pp. 95-109.

16.

16. Kim, S.H., Park, I.J., Chang, S.H. (2013), “Evaluation of disc cutter penetration depth of shield TBM in practice”, Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 3, pp. 321-331.

17.

17. Lee, H., Song, K.I., Cho, G.C. (2016), “Analysis on prediction models of TBM performance: A review”, Journal of Korean Tunnelling underground Space Association, Vol. 18, No. 2, pp. 245-256.

18.

18. Rostami, J., Ozdemir, L. (1993), “A new model for performance prediction of hard rock TBMs”, Proceedings of the 11th Rapid Excavation and Tunneling Conference, Boston, pp. 793-809.

19.

19. Sapigni, M., Berti, M., Bethaz, E., Busillo, A., Cardone, G. (2002), “TBM performance estimation using rock mass classifications”, International Journal of Rock Mechanics and Mining Sciences, Vol. 39, No. 6, pp. 771-788.

20.

20. Shahriar, K., Ahangari, K., Kamali-Bandpey, H. (2012), “A statistical model for prediction TBM performance using rock mass characteristics in the TBM driven Alborz Tunnel Project”, Research Journal of Applied Sciences, Engineering and Technology, Vol. 4, No. 23, pp. 5048-5054.

21.

21. Tarkoy, P.J. (1986), Practical geotechnical and engineering properties for tunnel-boring machine performance analysis and prediction, Transportation Research Record 1087, Washington, D.C., pp. 62-78.

22.

22. Yagiz, S. (2008), “Utilizing rock mass properties for predicting TBM performance in hard rock condition”, Tunnelling and Underground Space Technology, Vol. 23, No. 3, pp. 326-339.

(사)한국터널지하공간학회