바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Vol.22 No.2

초록보기
Abstract

Steel set is a structure that stabilize the NATM tunnel until the installation of shotcrete, and it is combined after the shotcrete is installed to improve stability. In this study, determination approach for the equivalent elastic modulus of shotcrete-lattice girder composite is newly suggested for tunneling simulation. Also, a method was presented to calibrate the equivalent elastic modulus through the comparison of the full 3D model and equivalent model. When the conventional equivalent elastic modulus is used for shotcrete-lattice girder composite, the flexural strength of equivalent model is 130% smaller than that of full 3D model. Equivalent elastic modulus is adjusted considering the error of flexural strength. It is found that the error of flexural strength obtained from adjusted equivalent model using adjusted equivalent elastic modulus is reduced less than 1%.

초록보기
Abstract

In this paper, a risk management system applicable to NATM tunneling projects is proposed. After investigating case histories in NATM tunnel collapse, this paper analyzes the potential risk factors and their corresponding risk events during NATM tunnel construction. The risk factors are categorized into three groups: geological, design and construction risk factors. The risk events are also categorized into four types: excessive deformation, excessive deformation with subsidence, collapse inside tunnels, and collapse inside tunnels with subsidence. The paper identifies risk scenarios in consideration of the risk factors and proposes a risk analysis/evaluation method for the NATM tunnel risk scenarios. Based on the evaluation results, the optimal mitigation measure to handle the risk events is suggested. In order to effectively facilitate a series of risk management processes, it is necessary to develop a risk register and a management ledger for risk mitigation measures that are customized to NATM tunnels. Lastly, the risk management for an actual NATM tunnel construction site is performed to verify the validity of the proposed system.

초록보기
Abstract

The purpose of this study is to analyze in advance the problems and improvements that may occur during the construction of intermediate slabs and the loading of intermediate slabs through the preliminary structural safety evaluation of intermediate slabs for Test bed structures in deep depth tunnels. The Test bed construction can verify and confirm the results of the design and construction technology development of large depth double deck tunnel through the process, and can also be used as a learning site for engineers and the general public to speed up the time of underground space development. There will be an opportunity to do this. In particular, the design load of middle slab built inside the circular deep-depth double-sided tunnel crosssection varies depending on the construction method and the construction equipment load used. Class 3 truck load of KL-510 assumed to be common load to upper and middle slab during loading and installation is loaded on upper and lower slab with different working position for each load combination Analyzed.

초록보기
Abstract

Low-pressure sodium lamps, high-pressure sodium lamps and fluorescent lamps etc are mainly used tunnel lighting in Rep. of Korea. Power rates for tunnel lighting are known to account for the highest percentage in the tunnel maintenance costs. Therefore, tunnel lights are being replaced by LED that have advantages such as low power consumption and longevity. To analysis effect of replacement low pressure sodium lamp with LED, illumination and monthly power usage for a year are investigated for 8 tunnels. Power usage for tunnel lighting is decreased by 26.1% to 59.6%, and illumination is increased by 34.1% to 293% replacing low pressure sodium lamp with LED.

초록보기
Abstract

Shield TBM tunneling, used in the construction of Seoul subway line 7 and line 9, has been well known as a very efficient, as well as safe, tunneling method. Although the Shield TBM method has been known to be effectively used in poor ground conditions, a number of troubles have occurred during the use of the shield TBM, due to inappropriate machine selection, machine breakdown, and unpredicted ground conditions etc. In this study, several accidents and trouble cases occurred during excavation by Shield TBM, reported from Japan, were investigated. A series of numerical analysis was then performed to compare with the trouble cases and back-analysis results for the cause analysis. The lessons learned from the case studies are presented at the end.

(사)한국터널지하공간학회