바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Vol.23 No.2

초록보기
Abstract

As the number of existing road tunnels increases every year, collapse and floor heaving accidents occur frequently during construction. The collapse among tunnel accidents dominates, so that studies related to the floor heaving are relatively insufficient. Accordingly, many studies to reinforce the lower part of the tunnel have been conducted, but the analysis on the effect of the curvature of the tunnel floor is insufficient. Therefore, in this study, the effects of the upper analysis area height and the coefficient of lateral earth pressure of the tunnel located on a tuff deterioration zone with a large rock cover, as well as the floor curvature, were examined through sensitivity analysis. As a result of the analysis, it turned out that the overall stability of the tunnel increases as the floor curvature increases, the coefficient of lateral earth pressure decreases, and the upper analysis region increases.

초록보기
Abstract

For the construction of a large underground space with a complex plant installed, it is necessary to analyze the stability considering the ground conditions and various load conditions. In this paper, finite element analysis was performed to analyze the support load that can be used in the design of a large underground space for high-density arrangement of complex plant. An analysis of underground continuous wall (D-wall) was performed considering the load and horizontal earth pressure in the large underground space. In addition, foundation ground analysis was carried out according to the load condition of the complex plant. In order to shorten the construction period, increase the space layout utilization, and secure the stability of the plant structure when installing the complex plant underground, the pipe rack module structure analysis was conducted. This study proposes a design and construction method for the optimal arrangement of underground complex plants using the analysis results.

초록보기
Abstract

In general, segment lining tunnel refers to a tunnel formed by connecting precast concrete segments as a ring and connecting such rings to each other in the longitudinal direction of the tunnel. As the structural properties of the segment lining is highly dependent on the behavior of the segment joints, thus correct modelling of joint behavior is crucial to understand and design the segment tunnel lining. When the tunnel is subjected to ground loads, the segment joint behaves like a hinge that resists rotation, and when the induced moment exceeds a certain limit of the rotation then it may enter into non-linear field. In understanding the effect of the segment joint on the lining behavior, a moment-rotation relationship of the segment joint was explored based on the Japanese practice and Janssen’s approach commonly used in the actual design. This study also presents a method to determine the rotational stiffness of joint refer to the bearing strength. The rotation of the segment joint was estimated in virtual design conditions based on the existing models and the proposed method. And the sectional force of the segment lining and joint were calculated along with the estimated rotation. As the rotation at the segment joint increases, the joint contact area decreases, so the designer have to verify the segment joint for bearing strength as well. This paper suggests a consistent method to determine the rotational stiffness and bearing strength of joints.

초록보기
Abstract

Due to the acceleration of road construction, the number and extension of tunnels are increasing every year. A lot of research has been done on the collapse of tunnels, but research on the invert heaving is insufficient. Therefore, in this study, a sensitivity analysis was performed using a geotechnical general-purpose program to analyze the effect of the invert curvature of a tunnel excavated on the soft ground. As a result, it was quantitatively confirmed that the stability of a tunnel was increased as the curvature of the tunnel invert was increased so that the safety factor was calculated to be large regardless of the ground conditions and the thickness of the support. In addition, it was confirmed that the stability of the tunnel was increased by reducing the convergence of the tunnel and the maximum bending stress supported by shotcrete. Therefore, when a tunnel is excavated on soft ground, it is believed that applying a curvature to the invert will increase the stability of the tunnel.

초록보기
Abstract

In general, the stress is concentrated on the pillar of very near parallel tunnel (VNPT), and the pillar has been reinforced by using steel-wires to maintain the stability of the tunnel. However, since the strength of the pillar decreases in the soil layer, the reinforcing pillar with the steel-wires is insufficient for tunnel stability. In this study, the laboratory tunnel experiment was conducted to examine the reinforcement effect for a new method, of which the pillar of VNPT is strengthened by using steel-pipes. As a result, against overburden stress, the bearing capacity of the steel-pipe reinforcement was 22% greater than that of the steel-wire reinforcement. In using the Particle Image Velocimetry method, the analysis shows that the steel-pipe reinforcement forms a more favorable condition of which uniformly the overburden load acts on the VNPT and the pillar than the steel-wire reinforcement. Based on the results, the steel-pipe reinforcement is expected to bring a more positive effect on tunnel stability than the steel-wire reinforcement.

(사)한국터널지하공간학회