바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Vol.23 No.4

초록보기
Abstract

Low-pressure sodium lamps, high-pressure sodium lamps, and fluorescent lamps are mainly used for tunnel lighting in Rep. of Korea, which accounts for the highest percentage in the tunnel maintenance costs. Therefore, tunnel lights are being replaced by LED lamp that have advantages with respect to low power consumption and sustainability. To analyze the effect of replacement high pressure sodium lamp with LED lamp, illumination and monthly power usage per year have been investigated for 10 tunnels. The usage of LED lamp results in illumination improvement from 27.9% to 490% and power saving around average 47.1%.

초록보기
Abstract

Most of measurement sensors used for maintenance are continuously exposed to various environmental factors such as transportation and rainfall, so the possibility of breakage increases gradually. The maintenance measurement sensor of domestic subway tunnel shows an average of 14.2% to 14.8% of loss rate after about 5 to 6 yearsfrom installation, and it shows a sensor loss rate of about 13.9% in case of foreign countries. As a result, it can be seen that an average of 15% of maintenance measurement sensors at home and abroad cannot send measuring values after 5~6 years. In order to continuously collect accurate data, measurement data must be recovered by performing repair or replacement of the sensor, but some lost measurement sensors are buried after installation. So, there are many difficulties in repairing sensors, including cost and time. Therefore, in this paper, we propose lost measurement sensor data estimation technology based on data trend analysis using adjacent sensors.

초록보기
Abstract

This paper is a study to improve the efficiency of mixing technology in the shield TBM chamber. Currently, the number of construction cases using the TBM method is increasing in Korea. According to the increasing use of TBM method, research on TBM method such as Disc Cutter, Cutter bit, and Segment also shows an increasingtrend. However, there is little research on the mixing efficiency in chamber and chamber. In order to improve the smooth soil treatment and the behavior of the excavated soil, a study was conducted on the change of the mixing efficiency according to the effective mixing bar arrangement in the chamber. In the scale model experiment,the ground was composed using plastic materials of different colors for ease of identification. In addition, the mixing bar arrangement was different and classified into 4 cases, and the particle size distribution was classified into single particle size and multiple particle size, and the experiment was conducted with a total of 8 cases. The rotation speed of the cutter head of all cases was the same as 5 RPM, and the experiment time was also carried out in the same condition, 1 minute and 30 seconds. In order to check the mixing efficiency, samples at the upper, middle (left or right), and lower positions of each case were collected and analyzed. As a result of the scaled-down model experiment, the mixing efficiency of Case 4 and Case 4-1 increased compared to Case 1 and Case 1-1, which are actually used. Accordingly, it is expected that the mixing efficiency can be increased by changing the arrangement of the mixing bar in the chamber, and it is considered to be effective in saving air as the mixing efficiency increases. Therefore, this study is considered to be an important indicator for the use of shield TBM in Korea.

초록보기
Abstract

Concrete structures are damaged by aging and external environmental factors. This type of damage is to appear in the form of cracks, to proceed in the form of spalling. Such concrete damage can act as the main cause of reducing the original design bearing capacity of the structure, and negatively affect the stability of the structure. If such damage continues, it may lead to a safety accident in the future, thus proper repair and reinforcement are required. To this end, an accurate and objective condition inspection of the structure must be performed, and for this inspection, a sensor technology capable of detecting damage area is required. For this reason, we propose a deep learning-based image processing algorithm that can detect spalling. To develop this, 298 spalling images were obtained, of which 253 images were used for training, and the remaining 45 images were used for testing. In addition, an improved loss function and data augmentation technique were applied to improve the detection performance. As a result, the detection performance of concrete spalling showed a mean intersection over union of 80.19%. In conclusion, we developed an algorithm to detect concrete spalling through a deep learning-based image processing technique, with an improved loss function and data augmentation technique. This technology is expected to be utilized for accurate inspection and diagnosis of structures in the future.

(D L E&C) ; ; ; ; pp.265-280 https://doi.org/10.9711/KTAJ.2021.23.4.265
초록보기
Abstract

Population density due to urbanization is making people interested in underground space development and much interest in TBM construction with low vibration and noise. This led to a lot of research on TBM. However, research on the characteristics of the cutterhead opening of the TBM equipment being occluded under the ground conditions under which it is excavated is insufficient. Accordingly, a study was conducted to investigate clogging of the cutterhead opening during the shield TBM rolling. To identify the clogging of cutterhead openings in SHIELD TBM equipment, the reduced model experiment was divided into clay rate (10%, 30%, 50%, 60%), cutterhead opening rate (30%, 50%, 60%), and cutterhead rotation direction (one-way, two-way) and rotational speed (3 RPM) and conducted in 36 cases. Results of scale model test on shield TBM clogging, it was analyzed that the ground condition containing clay soil increased the clogging effect in both directions than the unidirectional rotation, and that the lower the rotational speed of the cutterhead, the less the clogging effect. Accordingly, the direction of cutterhead rotation, rotational speed and opening rate are calculated by taking into account ground conditions during ground excavation, the clogging effect can be reduced. It is believed to be effective in saving air as the clogging effect is reduced. Therefore, this study is expected to be an important material for domestic use of shield TBM.

(사)한국터널지하공간학회