바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

A comparative study of risk according to smoke control flow rate and methods in case of train fire at subway platform

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2022, v.24 no.4, pp.327-339
https://doi.org/10.9711/KTAJ.2022.24.4.327


Abstract

The purpose of this study is to present the effective smoke control flow rate and mode for securing safety through quantitative risk assessment according to the smoke control flow rate and mode (supply or exhaust) of the platform when a train fire occurs at the subway platform. To this end, a fire outbreak scenario was created using a side platform with a central staircase as a model and fire analysis was performed for each scenario to compare and analyze fire propagation characteristics and ASET, evacuation analysiswas performed to predict the number of deaths. In addition, a fire accident rate (F)/number of deaths (N) diagram (F/N diagram) was prepared for each scenario to compare and evaluate the risk according to the smoke control flow rate and mode. In the ASET analysis of harmful factors, carbon monoxide, temperature, and visible distance determined by performance-oriented design methods and standards for firefighting facilities, the effect of visible distance is the largest, In the case where the delay in entering the platform of the fire train was not taken into account, the ASET was analyzed to be about 800 seconds when the air flow rate was 4 × 833 m3/min. The estimated number of deaths varies greatly depending on the location of the vehicle of fire train, In the case of a fire occurring in a vehicle adjacent to the stairs, it is shown that the increase is up to three times that of the vehicle in the lead. In addition, when the smoke control flow rate increases, the number of fatalities decreases, and the reduction rate of the air supply method rather than the exhaust method increases. When the supply flow rate is 4 × 833 m3/min, the expected number of deaths is reduced to 13% compared to the case where ventilation is not performed. As a result of the risk assessment, it is found that the current social risk assessment criteria are satisfied when smoke control is performed, and the number of deaths is the flow rate 4 × 833 m3/min when smoke control is performed at 29.9 people in 10,000 year, It was analyzed that it decreased to 4.36 people.

keywords
지하철 승강장화재, 제연 풍량, 소방시설에 대한 성능위주설계, 정량적 위험도 평가, Subway platform fire, Smoke control flow rate, Performance-based fire protection design, Quantitative risk assessment

(사)한국터널지하공간학회