바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Vol.4 No.3

; ; pp.175-184
초록보기
Abstract

Ground reaction curve is very useful information for estimating the installation time of the tunnel support. The ground reaction curve can be estimated by analytical closed form solutions derived in case of circular section and isotropic stress condition. The nature of the ground reaction, however, depends significantly on tunnel configurations. Nevertheless, few purely analytical and experimental studies of this problem due to tunnel configurations appear to have been carried out. Therefore, it is necessary to investigate the influence of tunnel configurations in order to use simply in practical design. This paper describes a numerical study for the intial elastic displacement in the ground reaction curve due to configuration of tunnel excavation. In order to evaluate the applicability of analytical closed form solution in practical design, the parametric studies were carried out by numerical analysis in elastic tunnel behaviour. In the studies, S value, namely configuration factor, defined as the ratio between tunnel height (b) and width (a), varies between 0.5 and 3.0, initial ground vertical stress varies between 5∼30 MPa for each S values. The results indicated that the self-supportability of ground is larger in the ground having low S value. It, however, is suggested that the applicability of closed form solution may not be adequate to determine directly the installation time of the support and self-supportability of ground. It should be necessary to perform the additional numerical analysis.

; ; ; pp.185-193
초록보기
Abstract

In this paper, deformation behavior of shallow subway tunnel excavated in weathered soil and reinforcement effects of longitudinal support measures are investigated via three dimensional FDM analysis. Two excavation methods, half-face excavation and full-face excavation, are considered in simulation to study the influences of excavation methods on tunnel deformation behavior. In addition, the reinforcing effects of RPUM and fiberglass pipe are compared. Face extrusion, covergence, preconvergence, and sidewall displacement are investigated to analyze tunnel deformation behavior, and surface settlement is used to analyze the effects of excavation methods and longitudinal supports measures. The simulation results show that half-face excavation induces larger convergence, preconvergence, sidewall displacement, surface settlement than full-face excavation, while full- face excavation induces larger extrusion than half-face excavation. In addition, under same excavation method, all displacements are larger when RPUM is only used for longitudinal support than when RPUM is jointly used with fiberglass pipes.

; ; ; ; pp.194-205
초록보기
Abstract

Most tunnel damage such as cracks or leakage which exist in tunnel liner commonly, is caused by the cavities that exist behind the tunnel liner, through the tunnel safety inspections. These cavities were analysed to check if they affect the stability of tunnels. This study is on the development of the controlled low-strength and flowable filling material which an be applied to the cavity behind the tunnel lining. The backfilling material studied here is crushed sand and stone-dust which is in cake-state and is a by-product obtained in the producing process of aggregate. Varying the compound mixing ratio, laboratory tests of compression test and chemical analyses were carried out. In addition, the material was applied to an old tunnel for the performance assessment.

; pp.206-216
초록보기
Abstract

Conventional Korean tunnel portals require a lot of overburden. For stability reasons, about 1.5 to 2.0 times the tunnel diameter is needed for the height in order to achieve a sufficient arching effect. Thus, considerable movement of earth and support constructions are required which lead to undesirably large changes of and damage to the environment. With a massively designed pipe roof, tunnels at low overburden can be built. To effectively construct pipe roof as an advanced safeguarding method, the following properties are indispensable: stability, insensitivity to settling and drilling accuracy. A new pipe roof method, AT-casing system, has been developed which on the one hand entirely combines the properties mentioned above, and which on the other hand permits the construction of safe, economical and environmentally friendly tunnels at low overburden heights of 3 to 5m.

; ; ; ; ; pp.217-227
초록보기
Abstract

Geostatistical methods were used for the groundwater flow analysis on the ○○ tunnel area. Linear regression analysis shows that the topographic elevation and ground water level of this area have very high correlation. Groundwater-level contour maps produced by ordinary kriging and cokriging have little differences in mountain areas. But, comparing two maps on the basis of an elevation contour map, a groundwater-level contour map using cokring is more accurate. Analyzing the groundwater flow on two groundwater-level contour maps, the groundwater of study area flows from the north-west mountain areas to near valleys, and from the peak of the mountain to outside areas. In the design steps, the groundwater-level distribution is reasonably considered in the tunnel construction area by cokriging approach. And, geostatistics will provide quantitative information in the unknown groundwatrer-level area.

; ; ; ; (White Light International) ; (White Light Thermal Technology) pp.228-234
초록보기
Abstract

Nowadays, the blast method is mainly operated in the fields of the rock excavation accompanied by construction site in Korea. Blast method has many merits, reducement of operation period, such as improvement of workability and etc. However, blast operation also create much loss and troubles with the neighbours for the environmental pollutions such as the noise, blast vibration, fly rocks and dusts. Thus, the non-vibration and shallow vibration methods have been used but they have also another problems in the view of the economy and the efficiency in operation. In this study, we had made laboratory tests for the breaking of the various Rock types by White Light Thermal Stress. The tests shows that one unit consuming 500kilowatts of electricity, would go 90 feet a day in tunneling if the tunnel was 16 feet by 16 feet. Also, if a faster rate of tunneling could be handled, other white light units could be added.

; ; ; pp.235-245
초록보기
Abstract

The purpose of this study is to figure out the tendency of tunnel convergence during excavation and to present a methodology for the prediction of a fault zone ahead of a tunnel face by analyzing three dimensional displacements in various ways. 3-D numerical analysis was performed to investigate changes of tunnel convergence vectors near a fault zone and to propose a flow chart for predicting fault zones. Results of the site investigation and results of trend line analysis of in-situ data were compared to verify the usefulness of a trend line analysis. It is concluded that the orientation of faults can be predicted by using stereonets and the direction of initial stresses can be predicted from the arm length of a displacement vector as a tunnel approaches fault zones. The results of the trend line analysis coincided with those of the site investigation, and a methodology for the prediction of a fault zone was proposed.

; ; ; ; pp.246-260
초록보기
Abstract

This paper presents the design case of the 3-arch tunnel under Daejeon railroad station building. The original construction method was the underpinning method supported by pipe-roof, but it was changed to the mined tunnelling method because of the complex construction condition and the safety problem. This 3-arch tunnel has a width of 28 meters and a height of 10 meters. Overburden is only 23m and the ground around the tunnel is a weathered rock. The allowable settlements for the station building and some railroads are very strict. Accordingly, various measurements for the tunnel stability and the settlement minimization was applied and they were reviewed by 2-D and 3-D numerical analysis.

(사)한국터널지하공간학회