바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

그래프 컨벌루션 네트워크 기반 주거지역 감시시스템의 얼굴인식 알고리즘 개선

Improvement of Face Recognition Algorithm for Residential Area Surveillance System Based on Graph Convolution Network

한국사물인터넷학회논문지 / Journal of The Korea Internet of Things Society, (P)2466-0078;
2024, v.10 no.2, pp.1-15
https://doi.org/10.20465/kiots.2024.10.2.001
담하의 (목원대학교)
민병원 (목원대학교)
  • 다운로드 수
  • 조회수

초록

스마트 지역사회의 구축은 지역사회의 안전을 보장하는 새로운 방법이자 중요한 조치이다. 촬영 각도로 인한 얼굴 기형 및 기타 외부 요인의 영향으로 인한 신원 인식 정확도 문제를 해결하기 위해 이 논문에서는 네트워크 모델을 구축할 때 전체 그래프 컨벌루션 모델을 설계하고, 그래프 컨벌루션 모델에 협력하여 얼굴의 핵심을 추출한다. 또한 얼굴의 핵심을 특정 규칙에 따라 핵심 포인트를 구축하며 이미지 컨벌루션 구조를 구축한 후 이미지 컨벌루션 모델을 추가하여 이미지 특징의 핵심을 개선한다. 마지막으로 두 사람의 얼굴의 이미지 특징 텐서를 계산하고 전체 연결 레이어를 사용하여 집계된 특징을 추출하고 판별하여 인원의 신원이 동일한지 여부를 결정한다. 최종적으로 다양한 실험과 테스트를 거쳐 이 글에서 설계한 네트워크의 얼굴 핵심 포인트에 대한 위치 정확도 AUC 지표는 300W 오픈 소스 데이터 세트에서 85.65%에 도달했다. 자체 구축 데이터 세트에서 88.92% 증가했다. 얼굴 인식 정확도 측면에서 이 글에서 제안한 IBUG 오픈 소스 데이터 세트에서 네트워크의 인식 정확도는 83.41% 증가했으며 자체 구축 데이터 세트의 인식 정확도는 96.74% 증가했다. 실험 결과는 이 글에서 설계된 네트워크가 얼굴을 모니터링하는 데 더 높은 탐지 및 인식 정확도를 가지고 있음을 보여준다.

keywords
Key Words : Face Recognition, Vision Transformer, Graph Convolution, Residential Area, Surveillance System, 주제어 : 얼굴인식, 비전 트랜스포머, 그래프 컨벌루션, 주거지역, 감시시스템

Abstract

The construction of smart communities is a new method and important measure to ensure the security of residential areas. In order to solve the problem of low accuracy in face recognition caused by distorting facial features due to monitoring camera angles and other external factors, this paper proposes the following optimization strategies in designing a face recognition network: firstly, a global graph convolution module is designed to encode facial features as graph nodes, and a multi-scale feature enhancement residual module is designed to extract facial keypoint features in conjunction with the global graph convolution module. Secondly, after obtaining facial keypoints, they are constructed as a directed graph structure, and graph attention mechanisms are used to enhance the representation power of graph features. Finally, tensor computations are performed on the graph features of two faces, and the aggregated features are extracted and discriminated by a fully connected layer to determine whether the individuals' identities are the same. Through various experimental tests, the network designed in this paper achieves an AUC index of 85.65% for facial keypoint localization on the 300W public dataset and 88.92% on a self-built dataset. In terms of face recognition accuracy, the proposed network achieves an accuracy of 83.41% on the IBUG public dataset and 96.74% on a self-built dataset. Experimental results demonstrate that the network designed in this paper exhibits high detection and recognition accuracy for faces in surveillance videos.

keywords
Key Words : Face Recognition, Vision Transformer, Graph Convolution, Residential Area, Surveillance System, 주제어 : 얼굴인식, 비전 트랜스포머, 그래프 컨벌루션, 주거지역, 감시시스템

한국사물인터넷학회논문지