바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
  • KCI

질의응답문서 검색에서 문서구조를 이용한 질의재생성에 관한 연구

Query Reconstruction for Searching QA Documents by Utilizing Structural Components

정보관리학회지 / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2006, v.23 no.2, pp.229-243
https://doi.org/10.3743/KOSIM.2006.23.2.229
최상희 (대구가톨릭대학교)
서은경 (한성대학교)

초록

질의응답문서는 이용자가 입력한 질의, 질의설명, 답을 아는 다른 이용자가 제시한 응답으로 구성된 구조화된 문서로서, 최근 웹 문서처럼 검색이 일반적으로 일어나고 있는 정보원이다. 이 연구에서는 질의응답문서의 구조적 특성을 기반으로 질의를 재생성하여 질의응답문서의 검색효율을 향상시키고자 하였다. 질의재생성 실험에서 성능이 비교된 문서구조는 질의와 응답내용이다. 질의를 기반으로 질의를 재생성하는 방식에서는 질의응답검색 시스템에 입력되어 있는 유사질의를 활용하여 클러스터링하는 기법이 적용되었다. 응답정보를 기반으로 질의를 재생성하는 방식에서는 가장 유사한 기존 질의에 대해 응답된 내용에서 단락검색으로 적합한 문장들을 선정하여 활용하는 기법이 적용되었다. 실험 결과 응답정보를 활용하여 질의를 재생성하는 방식이 정확률은 유지하면서 더 다양한 검색결과를 제공하는 것으로 나타났다.

keywords
Query-Answer Documents, Query Reconstruction, Query Clustering, Query Performance, Clustering, Passage Retrieval질의응답문서, 질의재생성, 질의클러스터링, 클러스터링, 단락검색, Query-Answer Documents, Query Reconstruction, Query Clustering, Query Performance, Clustering, Passage Retrieval질의응답문서, 질의재생성, 질의클러스터링, 클러스터링, 단락검색, 질의응답문서, 질의재생성, 질의클러스터링, 클러스터링, 단락검색

Abstract

This study aims to suggest an effective way to enhance question-answer(QA) document retrieval performance by reconstructing queries based on the structural features in the QA documents. QA documents are a structured document which consists of three components: question from a questioner, short description on the question, answers chosen by the questioner. The study proposes the methods to reconstruct a new query using by two major structural parts, question and answer, and examines which component of a QA document could contribute to improve query performance. The major finding in this study is that to use answer document set is the most effective for reconstructing a new query. That is, queries reconstructed based on terms appeared on the answer document set provide the most relevant search results with reducing redundancy of retrieved documents.

keywords
Query-Answer Documents, Query Reconstruction, Query Clustering, Query Performance, Clustering, Passage Retrieval질의응답문서, 질의재생성, 질의클러스터링, 클러스터링, 단락검색, Query-Answer Documents, Query Reconstruction, Query Clustering, Query Performance, Clustering, Passage Retrieval질의응답문서, 질의재생성, 질의클러스터링, 클러스터링, 단락검색, 질의응답문서, 질의재생성, 질의클러스터링, 클러스터링, 단락검색

참고문헌

1.

(1997). Conceptual Queries Using Conquer II. , 112-126.

2.

(2005). A Study On Clustering Query-answer Documents with Structural Features. 39(4), 105-118.

3.

(2001). Development of a Clustering Model for Automatic Knowledge Classification. 18(2), 203-230.

4.

(1995). The Query Clustering Problem: A Set Partitioning Approach. 7(6), 885-899.

5.

(1998). WebACE: a web agent for document categorization and exploration. , -.

6.

(2003). Query Type Classfication or Web Document Retrieval. , 64-71.

7.

(2000). A Comparative Study on Performance Evaluation of Document Clustering Results. , 45-50.

8.

(2004). New Directions in Question Answering. , -.

9.

(2002). An Intelligent Approach to Handling Imperfect Information in Concep-Based Natural Language Queries. 20(3), 291-328.

10.

(1998). Advantages of Query Biased Summaries in Information Retrieval. , 2-10.

11.

(2002). The Effectiveness of Query-Specific Hierarchic Clustering in Information Retrieval. 38(4), 559-38 582.

12.

(2001). Clustering User Queris of a Serach Engine. , 162-168.

13.

(2004). Refining Web Search Engine Results Using Incremental Clustering. 19(2), 191-199.

14.

(2004). Refining Web Search Engine Results Using Incremental Clustering. 19(2), 191-199.

정보관리학회지