바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

소셜미디어를 통한 우울 경향 이용자 담론 주제 분석

An Analysis of the Discourse Topics of Users who Exhibit Symptoms of Depression on Social Media

정보관리학회지 / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2019, v.36 no.4, pp.207-226
https://doi.org/10.3743/KOSIM.2019.36.4.207
서하림(Harim Seo ) (연세대학교 문헌정보학과 석사)
송민(Min Song ) (연세대학교 문헌정보학과 교수)

초록

우울증은 전 세계적으로 많은 사람들이 겪고 있으며, 최근 다양한 분야에서 꾸준히 우울증에 대한 연구가 수행되고 있다. 특히 사람들이 본인의 스트레스나 감정 상태에 대해 소셜미디어에 공유한 글을 통해 그들의 심리나 정신건강에 대해 파악해보고자 하는 맥락에서 소셜미디어를 활용한 연구 역시 유의미하게 받아들여지고 있다. 이에 본 연구에서는 우울 경향의 이용자와 그렇지 않은 이용자들의 2016년부터 2019년 2월까지의 트위터 데이터를 수집하여 어떤 주제적, 어휘 사용의 특성을 보이는지 보고자 하였으며, 우울 경향의 시기별로도 어떤 차이를 보이는지 살펴보기 위해 우울 경향 관측 날짜를 기준으로 하여 이전(before) 시기와 이후(after) 시기를 구분하여 실험을 수행하였다. 토픽모델링, 동시출현 단어분석, 감성분석 방법을 통해 우울 경향과 비(非)우울 경향 이용자의 텍스트의 주제적 차이를 살펴보았고, 감성 반응에 따라 사용한 어휘에 대해서도 살펴봄으로써 어떠한 특성이 있는지 확인해 보았다. 데이터 수집 단계에서 ‘우울’ 표현을 포함한 텍스트 데이터 수집방법을 통해 비교적 긴 기간, 많은 양의 데이터를 수집할 수 있었고, 또한 우울 경향의 여부와 시기적 구분에 따른 관심 주제에 대한 차이도 확인할 수 있었다는 점에서 유의미하다고 볼 수 있다.

keywords
소셜미디어, 텍스트 마이닝, 트위터, 우울증, 토픽모델링, 동시출현단어 분석, 감성분석, social media, text mining, twitter, depression, topic model, co-occurrence, sentiment analysis

Abstract

Depression is a serious psychological disease that is expected to afflict an increasing number of people. And studies on depression have been conducted in the context of social media because social media is a platform through which users often frankly express their emotions and often reveal their mental states. In this study, large amounts of Korean text were collected and analyzed to determine whether such data could be used to detect depression in users. This study analyzed data collected from Twitter users who had and did not have depressive tendencies between January 2016 and February 2019. The data for each user was separately analyzed before and after the appearance of depressive tendencies to see how their expression changed. In this study the data were analyzed through co-occurrence word analysis, topic modeling, and sentiment analysis. This study’s automated data collection method enabled analyses of data collected over a relatively long period of time. Also it compared the textual characteristics of users with depressive tendencies to those without depressive tendencies.

keywords
소셜미디어, 텍스트 마이닝, 트위터, 우울증, 토픽모델링, 동시출현단어 분석, 감성분석, social media, text mining, twitter, depression, topic model, co-occurrence, sentiment analysis
투고일Submission Date
2019-11-17
수정일Revised Date
2019-12-10
게재확정일Accepted Date
2019-12-19

정보관리학회지