바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
  • KCI

Web of Science 데이터학술지 게재 데이터논문의 지적구조 규명

An Investigation of Intellectual Structure on Data Papers Published in Data Journals in Web of Science

정보관리학회지 / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2020, v.37 no.1, pp.153-177
https://doi.org/10.3743/KOSIM.2020.37.1.153
정은경 (이화여자대학교 사회과학대학 문헌정보학과 교수)

초록

오픈과학의 흐름에서 데이터 공유와 재이용은 중요한 연구자의 활동이 되어가고 있다. 데이터 공유와 재이용에 관한 여러 논의 중에서 데이터학술지와 데이터논문의 발간이 가시적인 결과를 보여주고 있다. 데이터학술지는 여러 학문 분야에서 발간되고 있으며, 논문의 수도 점차 증가하고 있다. 데이터논문은 데이터 자체와는 다르게 인용을 주고 받는 활동이 포함되어, 따라서 이들이 형성하는 고유한 지적구조가 생겨나게 된다. 본 연구는 데이터학술지와 데이터논문이 학술커뮤니티에서 구성하는 지적구조를 규명하고자 Web of Science에 색인된 14종의 데이터학술지와 6,086건의 데이터논문과 인용된 참고문헌 84,908건을 분석하였다. 저자사항과 함께 동시인용분석과 서지결합분석을 네트워크로 시각화하여 데이터논문이 형성한 세부 주제 분야를 규명하였다. 분석결과, 저자, 저자소속기관, 국가를 추출하여 출현빈도를 살펴보면, 전통적인 학술지 논문과 다른 양상을 보인다. 이러한 결과는 데이터의 생산이 용이한 기관과 국가에 주로 데이터논문을 출간하기 때문이라고 해석될 수 있다. 동시인용분석와 서지결합분석 모두 분석도구, 데이터베이스, 게놈구성 등이 주된 세부 주제 영역으로 나타났다. 동시인용분석결과는 9개의 군집으로 형성되었는데, 특정 주제 분야로 나타난 영역은 수질과 기후 등의 분야이다. 서지결합분석은 총 27개의 컴포넌트로 구성되었는데, 수질, 기후 이 외에도 해양, 대기 등의 세부 주제 영역이 파악되었다. 특기할만한 사항으로는 사회과학 분야의 주제 영역도 나타났다는 점이다.

keywords
데이터학술지, 데이터논문, 인용분석, 네트워크, 동시인용분석, 서지결합분석, data journal, data paper, citation anlaysis, network, co-citation analysis, bibliographic coupling analysis

Abstract

In the context of open science, data sharing and reuse are becoming important researchers’ activities. Among the discussions about data sharing and reuse, data journals and data papers shows visible results. Data journals are published in many academic fields, and the number of papers is increasing. Unlike the data itself, data papers contain activities that cite and receive citations, thus creating their own intellectual structures. This study analyzed 14 data journals indexed by Web of Science, 6,086 data papers and 84,908 cited references to examine the intellectual structure of data journals and data papers in academic community. Along with the author’s details, the co-citation analysis and bibliographic coupling analysis were visualized in network to identify the detailed subject areas. The results of the analysis show that the frequent authors, affiliated institutions, and countries are different from that of traditional journal papers. These results can be interpreted as mainly because the authors who can easily produce data publish data papers. In both co-citation and bibliographic analysis, analytical tools, databases, and genome composition were the main subtopic areas. The co-citation analysis resulted in nine clusters, with specific subject areas being water quality and climate. The bibliographic analysis consisted of a total of 27 components, and detailed subject areas such as ocean and atmosphere were identified in addition to water quality and climate. Notably, the subject areas of the social sciences have also emerged.

keywords
데이터학술지, 데이터논문, 인용분석, 네트워크, 동시인용분석, 서지결합분석, data journal, data paper, citation anlaysis, network, co-citation analysis, bibliographic coupling analysis
투고일Submission Date
2020-02-25
수정일Revised Date
2020-03-05
게재확정일Accepted Date
2020-03-21

정보관리학회지