ISSN : 1013-0799
본 연구는 코로나바이러스감염증-19(이하 코로나바이러스) 백신에 대한 사회적 의견을 파악하기 위해 트위터에서 작성된 백신 관련 게시물들을 분석하였다. 2020년 3월 16일부터 2021 3월 15일까지 1년간 트위터에서 작성된 코로나바이러스 백신 이름을 키워드로 포함한 45,413개의 게시물을 수집하여 분석하였다. 데이터 수집을 위해 활용된 코로나바이러스 백신 키워드는 총 12개이며, 수집된 게시물 수순으로 ‘화이자’, ‘아스트라제네카’, ‘모더나’, ‘얀센’, ‘노바백스’, ‘시노팜’, ‘시노백’, ‘스푸트니크’, ‘바라트’, ‘캔시노’, ‘추마코프’, ‘벡토르’이다. 수집된 게시물들은 수기와 자동화된 방법을 동시 활용하여 키워드 분석, 감성 분석, 및 토픽모델링을 통하여 백신들에 대한 의견을 탐색하였다. 연구결과에 따르면 전반적으로 백신에 대한 부정적인 반응이 많았으며, 백신 접종 후유증에 대한 불안 및 백신의 효능에 대한 불신이 백신들에 대한 부정적인 주요 요소로 파악되었다. 이와는 반대로, 백신 접종에 따른 코로나바이러스 확산 억제에 대한 기대감이 백신에 대한 긍정적인 사회적 요소인 것을 확인할 수 있었다. 본 연구는 기존의 선행연구들이 뉴스 등 대중매체 데이터를 통해 코로나바이러스 백신에 대한 사회적 분위기를 파악하고자 했던 것과 달리, 소셜 미디어 데이터 수집 및 이를 활용한 키워드 분석, 감성 분석, 토픽 모델링 등의 여러 분석방법들을 사용하여 대중들의 의견을 파악하는 것으로 학술적 의의를 지닌다. 또한, 본 연구의 결과는 백신에 대한 사회적 분위기를 반영한 백신 접종 권장 정책 수립 기여라는 실질적 함의를 시사한다.
In this study, we aimed to understand the public opinion on COVID-19 vaccine. To achieve the goal, we analyzed COVID-19 vaccine-related Twitter posts. 45,413 tweets posted from March 16, 2020 to March 15, 2021 including COVID-19 vaccine names as keywords were collected. The 12 vaccine names used for data collection included ‘Pfizer’, ‘AstraZeneca’, ‘Modena’, ‘Jansen’, ‘NovaVax’, ‘Sinopharm’, ‘SinoVac’, ‘Sputnik V’, ‘Bharat’, ‘KhanSino’, ‘Chumakov’, and ‘VECTOR’ in the order of the number of collected posts. The collected posts were analyzed manually and automatedly through keyword analysis, sentiment analysis, and topic modeling to understand the opinions for the investigated vaccines. According to the results, there were generally more negative posts about vaccines than positive posts. Anxiety about the aftereffects of vaccination and distrust in the efficacy of vaccines were identified as major negative factors for vaccines. On the contrary, the anticipation for the suppression of the spread of coronavirus following vaccination was identified as a positive social factor for vaccines. Different from previous studies that investigated opinions about COVID-19 vaccines through mass media data such as news articles, this study explores opinions of social media users using keyword analysis, sentiment analysis, and topic modeling. In addition, the results of this study can be used by governmental institutions for making policies to promote vaccination reflecting the social atmosphere.