바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
  • KCI

연구데이터 품질관리를 위한 프로세스 모델 제안

Proposal of Process Model for Research Data Quality Management

정보관리학회지 / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2023, v.40 no.1, pp.51-71
https://doi.org/10.3743/KOSIM.2023.40.1.051
한나은 (한국과학기술정보연구원)

초록

본 연구는 공공데이터 품질관리 모델, 빅데이터 품질관리 모델, 그리고 연구데이터 관리를 위한 데이터 생애주기 모델을 분석하여 각 품질관리 모델에서 공통적으로 나타나는 구성 요인을 분석하였다. 품질관리 모델은 품질관리를 수행하는 객체인 대상 데이터의 특성에 따라 생애주기에 맞추어 혹은 PDCA 모델을 바탕으로 구축되고 제안되는데 공통적으로 계획, 수집 및 구축, 운영 및 활용, 보존 및 폐기의 구성요소가 포함된다. 이를 바탕으로 본 연구는 연구데이터를 대상으로 한 품질관리 프로세스 모델을 제안하였는데, 특히 연구데이터를 대상 데이터로 하여 서비스를 제공하는 연구데이터 서비스 플랫폼에서 데이터를 수집하여 서비스하는 일련의 과정에서 수행해야하는 품질관리에 대해 계획, 구축 및 운영, 활용단계로 나누어 논의하였다. 본 연구는 연구데이터 품질관리 수행 방안을 위한 지식 기반을 제공하는데 의의를 갖는다.

keywords
연구데이터 품질관리, 연구데이터 품질, 데이터 품질관리, 연구데이터 품질관리 모델, 품질관리 프로세스 모델

Abstract

This study analyzed the government data quality management model, big data quality management model, and data lifecycle model for research data management, and analyzed the components common to each data quality management model. Those data quality management models are designed and proposed according to the lifecycle or based on the PDCA model according to the characteristics of target data, which is the object that performs quality management. And commonly, the components of planning, collection and construction, operation and utilization, and preservation and disposal are included. Based on this, the study proposed a process model for research data quality management, in particular, the research data quality management to be performed in a series of processes from collecting to servicing on a research data platform that provides services using research data as target data was discussed in the stages of planning, construction and operation, and utilization. This study has significance in providing knowledge based for research data quality management implementation methods.

keywords
research data quality management, research data quality, data quality management (DQM), research data quality management model, data quality management process model
투고일Submission Date
2023-02-14
수정일Revised Date
2023-03-10
게재확정일Accepted Date
2023-03-15

정보관리학회지