Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Syringe Infusion-based Contactless Atmospheric Pressure Ionization Mass Spectrometry for Small and Large Biomolecules

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2012, v.3 no.4, pp.87-92
https://doi.org/10.5478/MSL.2012.3.4.87
Lo Ta-Ju (National Chiao Tung University)
Chang Chia-Hsien (National Chiao Tung University)
Chen Yu-Chie (National Chiao Tung University)
  • Downloaded
  • Viewed

Abstract

In this study, we explored a new approach for generating ions of organics and biomolecules using contactless atmosphericpressure ionization (C-API). That is, a tapered capillary (~20 cm) was connected to a syringe, which was coupled to asyringe pump for providing a given flow rate to introduce sample solution to the proximity of a mass spectrometer. The gasphase ions derived from analytes were readily formed in the capillary outlet, which was very close to the mass spectrometer(~1 mm). No external electric connection was applied on the capillary emitter. This setup is very simple, but it can function as anion source. This approach can be readily used for the analysis of small molecules such as amino acids and large molecules suchas peptides and proteins. The limit of the detection of this approach was estimated to be ~10 pM when using bradykinin as thesample. Thus, we believe that this approach should be very useful for being used as an alternative ion source because of its lowcost, high sensitivity, simplicity, and ease of operation.

keywords
Electrospray ionization, Ion source, Atmospheric pressure ionization, C-API, Mass spectrometry


Reference

1

Fenn, J. B. (1989). . Science, 246, 61-.

2

Emmett, M. R. (1995). . J. Neurosci. Methods, 62, 141-.

3

Wilm, M. (1996). . Anal. Chem, 68, 1-.

4

Takáts, Z. (2004). . Science, 306, 471-.

5

Takáts, Z. (2005). . J. Mass Spectrom, 40, 1261-.

6

Miao, Z. (2011). . Anal. Chem, 83, 3994-.

7

Laskin, J. (2012). . Anal. Chem, 84, 141-.

8

Zhu, L. (2008). . Rapid Commun. Mass Spectrom, 22, 2993-.

9

McCullough, B. J. (2011). . Rapid Commun. Mass Spectrom, 25, 1445-.

10

Cheng, C-.Y. (2008). . Anal. Chem, 80, 7699-.

11

Harper, J. D. (2008). . Anal. Chem, 80, 9097-.

12

Santos, V. G. (2011). . Anal. Chem, 83, 1375-.

13

Chen, T.-Y. (2010). . Chem. Commun, 46, 8347-.

14

Chen, T.-Y. (2010). . J. Am. Soc. Mass Spectrom, 21, 1547-.

15

Lo, T.-J. (2012). . J. Mass Spectrom, 47, 480-.

16

Hirabayashi, A. (1995). . Anal. Chem, 67, 2878-.

17

Dams, R. (2002). . Anal. Chem, 74, 3206-.

18

Haddad, R. (2008). . Anal. Chem, 80, 2744-.

19

Cody, R. B. (2005). . Anal. Chem, 77, 2297-.

20

Sampson, J. S. (2006). . J. Am. Soc. Mass Spectrom, 17, 1712-.

21

Nemes, P. (2007). . Anal. Chem, 79, 8098-.

22

Haapala, M. (2007). . Anal. Chem, 79, 7867-.

23

Trimpin, S. (2009). . Mol. Cell Proteom, 9, 362-.

24

Weston, D. J. (2010). . Analyst, 135, 661-.

25

Huang, M.-Z. (2010). . Annu. Rev. Anal. Chem, 3, 43-.

26

Alberici, R. M. (2010). . Anal. Bioanal. Chem, 398, 265-.

27

Xiaoxiao, M. (2012). . TRAC-Trend Anal. Chem, 35, 50-.

28

McEwen, C. N. (2005). . Anal. Chem, 77, 7826-.

29

McEwen, C. N. (2007). . J. Am. Soc. Mass Spectrom, 18, 1274-.

30

Hsieh, C.-H. (2011). . Anal. Chem, 83, 2866-.

31

Hsieh, C.-H. (2012). . J. Mass Spectrom, 47, 586-.

Submission Date
2012-12-05
Revised Date
2012-12-17
Accepted Date
2012-12-18
상단으로 이동

Mass Spectrometry Letters