Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Feasibility of Using Graphite Powder to Enhance Uranium Ion Intensity in Thermal Ionization Mass Spectrometry (TIMS)

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2016, v.7 no.4, pp.102-105
https://doi.org/10.5478/MSL.2016.7.4.102
Park Jeng-Ho (Korea Atomic Energy Research Institute, University of Science and Technology)
  • Downloaded
  • Viewed

Abstract

This study explored the feasibility of using a carburization technique to enhance the ion intensity of isotopic analysis of ultra-trace levels of uranium using thermal ionization mass spectrometry (TIMS). Prior to fixing uranium samples on TIMS filaments, graphite powder suspended in nitric acid was deposited on rhenium filaments. We observed an enhancement of 238U+ intensity by a factor of two when carburization was used, and were able to roughly optimize the amount of graphite powder necessary for carburization. The positive shift in heating current when evaporating filaments upon carburization implies that uranium was chemically altered by carburization, when compared to normal fixation processes. The good agreement between our method and known standards down to an ultra-trace level shows that the proposed technique can be applied to isotopic uranium analysis down to abundances of ~10 pg.

keywords
carburization, thermal ionization mass spectrometry (TIMS), uranium, nuclear safeguards


Reference

1

Donohue, D. L.. (1998). . J. Alloy Compd, 271-273, 11-.

2

Donohue, D. L.. (2008). . Appl. Surf. Sci, 255, 2561-.

3

Magara, M.. (2000). . Appl. Radiat. Isotopes, 53, 87-.

4

Jakubowski, N.. (2011). . J. Anal. At. Spectrom, 26, 693-.

5

Esaka, F.. (2009). . Talanta, 78, 290-.

6

Fumitaka Esaka. (2011). Feasibility Study of Isotope Ratio Analysis of Individual Uranium-Plutonium Mixed Oxide Particles with SIMS and ICP-MS. Mass Spectrometry Letters, 2(4), 80-83.

7

Ranebo, Y.. (2009). . J. Anal. At.. Spectrom, 24, 277-.

8

Heumann, K. G.. (1995). . Analyst, 120, 1291-.

9

Stetzer, O.. (2004). . Nucl. Instr. Meth. Phys. Res. A, 525, 582-.

10

Lee, C.-G.. (2006). . Jpn. J. Appl. Phys, 45, 294-296.

11

Kraiem, M.. (2010). . Int. J. Mass Spectrom, 289, 108-.

12

Gaines, G.. (1959). . J. Electrochem. Soc, 106, 881-.

13

Pallmer Jr., P.. (1980). . J. Appl. Phys, 51, 3776-.

14

Jakopič, R.. (2009). . Int. J. Mass Spectrom, 279, 87-.

15

Jong Ho Park. (2010). A Technique to Minimize Impurity Signal from Blank Rhenium Filaments for Highly Accurate TIMS Measurements of Uranium in Ultra-Trace Levels. Mass Spectrometry Letters, 1(1), 17-20. http://dx.doi.org/10.5478/MSL.2010.1.1.017.

16

Suzuki, D.. (2010). . Int. J. Mass Spectrom, 294, 23-.

17

박종호. (2011). A Correction Method for the Peak Tailing Backgrounds for Accurate Isotope Ratio Measurements of Uranium in Ultra Trace Levels using Thermal Ionization Mass Spectrometry. Bulletin of the Korean Chemical Society, 32(12), 4327-4331.

18

Park, J.-H.. (2013). . Asian J. Chem, 25, 7061-.

19

Park. J.-H.. (2016). . Talanta, 160, 600-.

20

박종호. (2016). Complete Simultaneous Analysis of Uranium Isotopes in NUSIMEP-7 Microparticles Using SEM-TIMS. Mass Spectrometry Letters, 7(3), 64-68. http://dx.doi.org/10.5478/MSL.2016.7.3.64.

Submission Date
2016-11-24
Revised Date
2016-12-08
Accepted Date
2016-12-08
상단으로 이동

Mass Spectrometry Letters