ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN2233-4203
  • E-ISSN2093-8950
  • ESCI, SCOPUS, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Structural Analysis of [Cu(II)-amyloidogenic peptide] Complexes

Structural Analysis of [Cu(II)-amyloidogenic peptide] Complexes

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2018, v.9 no.1, pp.17-23
https://doi.org/10.5478/MSL.2017.9.1.17
Eugene Cha (Kumoh National Institute of Technology)
Jae-Hong Seo (Kumoh National Institute of Technology)
Ho-Tae Kim (Kumoh National Institute of Technology)
  • 다운로드 수
  • 조회수

Abstract

Studies on the interactions of amyloidogenic proteins with trace metals, such as copper, have indicated that the metal ions perform a critical function in the early oligomerization process. Herein, we investigate the effects of Cu(II) ions on the active sequence regions of amyloidogenic proteins using electrospray ionization mass spectrometry (ESI-MS) and collision induced dissociation tandem MS (CID-MS/MS). We chose three amyloidogenic peptides NNQQNY, LYQLEN, and VQIVYK from yeast prion like protein Sup35, insulin chain A, and tau protein, respectively. [Cu-peptide] complexes for all three peptides were observed in the mass spectra. The mass spectra also show that increasing Cu(II) concentrations decrease the population of existing peptide oligomers. The tandem mass spectrum of NNQQNY shows preferential binding for the N-terminal region. All three peptides are likely to appear to be in a Cu-monomer-monomer (Cu-M-M) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

keywords
amyloidogenic peptides, Cu(II) ions, oligomer, ESI-MS, CID-MS/MS


참고문헌

1

Wogulis, M.. (2005). . J. Neurosci., 25, 1071-. http://dx.doi.org/10.1523/JNEUROSCI.2381-04.2005.

2

Jarrett, J. T.. (1993). . Cell, 73, 1055-. http://dx.doi.org/10.1016/0092-8674(93)90635-4.

3

Wagoner, V. A.. (2014). . Proteins Struct. Funct. Bioinforma., 82, 1469-. http://dx.doi.org/10.1002/prot.24515.

4

Jobling, M. F.. (2002). . J. Neurochem., 73, 1557-. http://dx.doi.org/10.1046/j.1471-4159.1999.0731557.x.

5

Stefani, M.. (2012). . Prog. Neurobiol., 99, 226-. http://dx.doi.org/10.1016/j.pneurobio.2012.03.002.

6

Demuro, A.. (2005). . J. Biol. Chem., 280, 17294-. http://dx.doi.org/10.1074/jbc.M500997200.

7

Teng, P. K.. (2009). . Protein Eng. Des. Sel., 22, 531-. http://dx.doi.org/10.1093/protein/gzp037.

8

Zou, R.. (2015). . Chem. Soc. Rev., 44, 5200-. http://dx.doi.org/10.1039/C5CS00234F.

9

Abelein, A.. (2015). . Proc. Natl. Acad. Sci., 112, 5407-. http://dx.doi.org/10.1073/pnas.1421961112.

10

Li, H.. (2015). . Anal. Chem., 87, 9829-. http://dx.doi.org/10.1021/acs.analchem.5b02217.

11

Sanchez-Lopez, C.. (2016). . Inorg. Chem., , -.

12

Gomes, C. M.. (2011). Protein folding and metal ions: mechanisms, biology and disease:CRC Press.

13

Dong, J.. (2007). . J. Biol. Chem., 282, 34204-. http://dx.doi.org/10.1074/jbc.M704952200.

14

Brader, M. L.. (1992). . Biochemistry (Mosc.), 31, 4691-. http://dx.doi.org/10.1021/bi00134a023.

15

Krishna, N. R. S.. (2011). . Protein Pept. Lett., 18, 457-. http://dx.doi.org/10.2174/092986611794927929.

16

Xu, H.. (2014). . Front. Aging Neurosci., 6, 121-.

17

Ma, Q. -F.. (2005). . Biopolymers, 79, 74-. http://dx.doi.org/10.1002/bip.20335.

18

Calabrese, M. F.. (2009). . Prion, 3, 1-. http://dx.doi.org/10.4161/pri.3.1.8601.

19

Pedersen, J. T.. (2011). . Angew. Chem. Int. Ed., 50, 2532-. http://dx.doi.org/10.1002/anie.201006335.

20

Gamez, P.. (2015). . AIP Adv., 5, 92503-. http://dx.doi.org/10.1063/1.4921314.

21

Derrick, J. S.. (2017). . J. Am. Chem. Soc., 139, 2234-. http://dx.doi.org/10.1021/jacs.6b09681.

22

Seo, J. -H.. (2017). . Int. J. Mass Spectrom., 415, 55-. http://dx.doi.org/10.1016/j.ijms.2017.02.005.

23

Mold, M.. (2013). . Sci. Rep., 3, 1256-. http://dx.doi.org/10.1038/srep01256.

24

Mayes, J.. (2014). . J. Biol. Chem., 289, 12052-. http://dx.doi.org/10.1074/jbc.M113.525212.

25

Hane, F.. (2013). . PLoS One, 8, e59005-. http://dx.doi.org/10.1371/journal.pone.0059005.

26

Pedersen, J. T.. (2011). . J. Biol. Chem., 286, 26952-. http://dx.doi.org/10.1074/jbc.M111.220863.

27

Belczyk-Ciesielska, A.. (2014). . Inorg. Chem., 53, 4639-. http://dx.doi.org/10.1021/ic5003176.

28

Roepstorff, P.. (1984). . Biomed. Mass Spectrom., 11, 601-. http://dx.doi.org/10.1002/bms.1200111109.

29

Hunt, D. F.. (1986). . Proc. Natl. Acad. Sci. U. S. A., 83, 6233-. http://dx.doi.org/10.1073/pnas.83.17.6233.

30

Bleiholder, C.. (2011). . Nat. Chem., 3, 172-. http://dx.doi.org/10.1038/nchem.945.

31

Timari, S.. (2011). . J. Inorg. Biochem., 105, 1009-. http://dx.doi.org/10.1016/j.jinorgbio.2011.04.007.

투고일Submission Date
2018-01-09
수정일Revised Date
2018-01-31
게재확정일Accepted Date
2018-02-07
상단으로 이동

Mass Spectrometry Letters