ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN2233-4203
  • E-ISSN2093-8950
  • ESCI, SCOPUS, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

DC23, a Triazolothione Resorcinol Analogue, Is Extensively Metabolized to Glucuronide Conjugates in Human Liver Microsomes

DC23, a Triazolothione Resorcinol Analogue, Is Extensively Metabolized to Glucuronide Conjugates in Human Liver Microsomes

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2018, v.9 no.1, pp.24-29
https://doi.org/10.5478/MSL.2017.9.1.24
Jong Cheol Shon (Kyungpook National University)
Jeongmin Joo (Daegu-Gyeongbuk Medical Innovation Foundation)
Taeho Lee (Kyungpook National University)
Nam Doo Kim (Daegu-Gyeongbuk Medical Innovation Foundation)
Kwang-Hyeon Liu (Kyungpook National University)
  • 다운로드 수
  • 조회수

Abstract

DC23, a triazolothione resorcinol analogue, is known to inhibit heat shock protein 90 and pyruvate dehydrogenase kinase which are up-regulated in cancer and diabetes, respectively. This study was performed to elucidate the metabolism of DC23 in human liver microsomes (HLMs). HLMs incubated with DC23 in the presence of uridine 5’-diphosphoglucuronic acid (UDPGA) and/or β-nicotinamide adenine dinucleotide phosphate (NADPH) resulted in the formation of four metabolites, M1- M4. M1 was identified as DC23-N-Oxide, on the basis of LC-MS/MS analysis. DC23 was further metabolized to its glucuronide conjugates (M2, M3, and M4). In vitro metabolic stability studies conducted with DC23 in HLMs revealed significant glucuron- ide conjugation with a t 1/2 value of 1.3 min. The inhibitory potency of DC23 on five human cytochrome P450s was also investi- gated in HLMs. In these experiments, DC23 inhibited CYP2C9-mediated tolbutamide hydroxylase activity with an IC 50 value of 8.7 µM, which could have implications for drug interactions.

keywords
DC23, microsomes, oxidation, glucuronidation, drug interaction


참고문헌

1

Sidera, K.. (2014). . Recent Pat Anticancer Drug Discov, 9, 1-.

2

Biamonte, M. A.. (2010). . J. Med. Chem., 53, 3-. http://dx.doi.org/10.1021/jm9004708.

3

Taddei, M.. (2014). . J. Med. Chem., 57, 2258-. http://dx.doi.org/10.1021/jm401536b.

4

Zhang, C.. (2017). . Eur. J. Med. Chem., 125, 315-. http://dx.doi.org/10.1016/j.ejmech.2016.09.043.

5

Sharp, S. Y.. (2012). . PLoS One, 7, e44642-. http://dx.doi.org/10.1371/journal.pone.0044642.

6

Jeong, J. H.. (2016). . Eur. J. Med. Chem., 124, 1069-. http://dx.doi.org/10.1016/j.ejmech.2016.10.038.

7

Fuhrmann-Stroissnigg, H.. (2017). . Nat. Commun., 8, 422-. http://dx.doi.org/10.1038/s41467-017-00314-z.

8

정주희. (2017). Chalcone-templated Hsp90 inhibitors and their effects on gefitinib resistance in non-small cell lung cancer (NSCLC). Archives of Pharmacal Research, 40(1), 96-105.

9

Woodhead, A. J.. (2010). . J. Med. Chem., 53, 5956-. http://dx.doi.org/10.1021/jm100060b.

10

London, C. A.. (2011). . PLoS One, 6, e27018-. http://dx.doi.org/10.1371/journal.pone.0027018.

11

Eccles, S. A.. (2008). . Cancer Res, 68, 2850-. http://dx.doi.org/10.1158/0008-5472.CAN-07-5256.

12

Sharp, S. Y.. (2007). . Mol. Cancer Ther., 6, 1198-. http://dx.doi.org/10.1158/1535-7163.MCT-07-0149.

13

Feldman, R. I.. (2009). . Chem. Biol. Drug Des., 74, 43-. http://dx.doi.org/10.1111/j.1747-0285.2009.00833.x.

14

Tso, S. C.. (2014). . J. Biol. Chem., 289, 4432-. http://dx.doi.org/10.1074/jbc.M113.533885.

15

Lee, B.. (2015). . Drug Metab. Dispos., 43, 1137-. http://dx.doi.org/10.1124/dmd.114.063016.

16

Kim, M. J.. (2005). . Rapid Commun. Mass Spectrom., 19, 2651-. http://dx.doi.org/10.1002/rcm.2110.

17

Joo, J.. (2013). . Biopharm. Drug Dispos., 34, 195-. http://dx.doi.org/10.1002/bdd.1837.

18

Walsky, R. L.. (2003). . Drug Metab. Dispos., 31, 343-. http://dx.doi.org/10.1124/dmd.31.3.343.

투고일Submission Date
2018-02-08
수정일Revised Date
2018-02-21
게재확정일Accepted Date
2018-02-21
상단으로 이동

Mass Spectrometry Letters