ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN2233-4203
  • E-ISSN2093-8950
  • ESCI, SCOPUS, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

In vitro Metabolism of Methallylescaline in Human Hepatocytes Using Liquid Chromatography-High Resolution Mass Spectrometry

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2018, v.9 no.3, pp.86-90
https://doi.org/10.5478/MSL.2018.9.3.86
Sunjoo Kim (The Catholic University of Korea)
Ju-Hyun Kim (Yeungnam University)
Dong Kyun Kim (The Catholic University of Korea)
Jaesin Lee (National Forensic Service)
인상환 (National Forensic Service)
Hye Suk Lee (The Catholic University of Korea)
  • 다운로드 수
  • 조회수

Abstract

Methallylescaline, 2-(3,5-dimethoxy-4-[(2-methylprop-2-en-1-yl)oxy]phenyl)ethanamine, is a new psychoactive substance with potent agonist of 5-HT receptor, but there is little information on its pharmacological effect, metabolism, and tox- icity. It is necessary to characterize the metabolic profiling of methallylescaline in human hepatocytes using liquid chromatogra- phy-high resolution mass spectrometry. Methallylescaline was metabolized to three hydroxy-methallylescaline (M1-M3) and dihydroxy-methallylescaline (M4) via hydroxylation in human hepatocytes. CYP2D6, CYP2J2, CYP1A2, and CYP3A4 enzymes were responsible for the metabolism of methallylescaline. The metabolites as well as methallylescaline would be used for monitoring the abuse of methallylescaline,

keywords
methallylescaline, in vitro metabolism, liquid chromatography-high resolution mass spectrometry


참고문헌

1

UNODC. World Drug Report 2018. .

2

Halberstadt, A. L.. (2014). . Neuropharmacology, 77, 200-. http://dx.doi.org/10.1016/j.neuropharm.2013.08.025.

3

Halberstadt, A. L.. (2015). . Behav. Brain Res., 277, 99-. http://dx.doi.org/10.1016/j.bbr.2014.07.016.

4

Braden, M. R.. (2006). . Mol. Pharmacol., 70, 1956-. http://dx.doi.org/10.1124/mol.106.028720.

5

Hansen, M.. (2014). . ACS Chem. Neurosci., 5, 243-. http://dx.doi.org/10.1021/cn400216u.

6

EMCDDA. EMCDDA-Europol 2014 Annual Report on the implementation of Council Decision 2005/387/JHA. .

7

Boumrah, Y.. (2016). . Drug Test. Anal., 8, 248-. http://dx.doi.org/10.1002/dta.1865.

8

Caspar, A. T.. (2017). . J. Pharm. Biomed. Anal., 134, 158-. http://dx.doi.org/10.1016/j.jpba.2016.11.040.

9

Kim, J. H.. (2016). . J. Pharm. Biomed. Anal., 119, 50-. http://dx.doi.org/10.1016/j.jpba.2015.11.023.

10

Wohlfarth, A.. (2017). . Drug Test. Anal., 9, 680-. http://dx.doi.org/10.1002/dta.2044.

11

공태연. (2018). Synthetic cannabinoids are substrates and inhibitors of multiple drug-metabolizing enzymes. Archives of Pharmacal Research, 41(7), 691-710.

12

정현욱. (2016). Comparative metabolism of honokiol in mouse, rat, dog, monkey, and human hepatocytes. Archives of Pharmacal Research, 39(4), 516-530.

13

Davies, B.. (1993). . Pharm. Res., 10, 1093-. http://dx.doi.org/10.1023/A:1018943613122.

14

Charalampous, K. D.. (1966). . Psychopharmacologia, 9, 48-. http://dx.doi.org/10.1007/BF00427703.

15

Kanamori, T.. (2013). . J. Forensic. Sci., 58, 279-. http://dx.doi.org/10.1111/j.1556-4029.2012.02289.x.

투고일Submission Date
2018-09-07
수정일Revised Date
2018-09-28
게재확정일Accepted Date
2018-09-28
상단으로 이동

Mass Spectrometry Letters