• P-ISSN2233-4203
  • E-ISSN2093-8950
  • ESCI, SCOPUS, KCI

Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

In vitro Metabolism of Methallylescaline in Human Hepatocytes Using Liquid Chromatography-High Resolution Mass Spectrometry

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2018, v.9 no.3, pp.86-90
https://doi.org/10.5478/MSL.2018.9.3.86
Kim Sunjoo (The Catholic University of Korea)
Kim Ju-Hyun (Yeungnam University)
Kim Dong Kyun (The Catholic University of Korea)
Lee Jaesin (National Forensic Service)
In Sangwhan (National Forensic Service)
Lee Hye Suk (The Catholic University of Korea)
  • Downloaded
  • Viewed

Abstract

Methallylescaline, 2-(3,5-dimethoxy-4-[(2-methylprop-2-en-1-yl)oxy]phenyl)ethanamine, is a new psychoactive substance with potent agonist of 5-HT receptor, but there is little information on its pharmacological effect, metabolism, and tox- icity. It is necessary to characterize the metabolic profiling of methallylescaline in human hepatocytes using liquid chromatogra- phy-high resolution mass spectrometry. Methallylescaline was metabolized to three hydroxy-methallylescaline (M1-M3) and dihydroxy-methallylescaline (M4) via hydroxylation in human hepatocytes. CYP2D6, CYP2J2, CYP1A2, and CYP3A4 enzymes were responsible for the metabolism of methallylescaline. The metabolites as well as methallylescaline would be used for monitoring the abuse of methallylescaline,

keywords
methallylescaline, in vitro metabolism, liquid chromatography-high resolution mass spectrometry


Reference

1

UNODC. World Drug Report 2018. .

2

Halberstadt, A. L.. (2014). . Neuropharmacology, 77, 200-. http://dx.doi.org/10.1016/j.neuropharm.2013.08.025.

3

Halberstadt, A. L.. (2015). . Behav. Brain Res., 277, 99-. http://dx.doi.org/10.1016/j.bbr.2014.07.016.

4

Braden, M. R.. (2006). . Mol. Pharmacol., 70, 1956-. http://dx.doi.org/10.1124/mol.106.028720.

5

Hansen, M.. (2014). . ACS Chem. Neurosci., 5, 243-. http://dx.doi.org/10.1021/cn400216u.

6

EMCDDA. EMCDDA-Europol 2014 Annual Report on the implementation of Council Decision 2005/387/JHA. .

7

Boumrah, Y.. (2016). . Drug Test. Anal., 8, 248-. http://dx.doi.org/10.1002/dta.1865.

8

Caspar, A. T.. (2017). . J. Pharm. Biomed. Anal., 134, 158-. http://dx.doi.org/10.1016/j.jpba.2016.11.040.

9

Kim, J. H.. (2016). . J. Pharm. Biomed. Anal., 119, 50-. http://dx.doi.org/10.1016/j.jpba.2015.11.023.

10

Wohlfarth, A.. (2017). . Drug Test. Anal., 9, 680-. http://dx.doi.org/10.1002/dta.2044.

11

공태연. (2018). Synthetic cannabinoids are substrates and inhibitors of multiple drug-metabolizing enzymes. Archives of Pharmacal Research, 41(7), 691-710.

12

정현욱. (2016). Comparative metabolism of honokiol in mouse, rat, dog, monkey, and human hepatocytes. Archives of Pharmacal Research, 39(4), 516-530.

13

Davies, B.. (1993). . Pharm. Res., 10, 1093-. http://dx.doi.org/10.1023/A:1018943613122.

14

Charalampous, K. D.. (1966). . Psychopharmacologia, 9, 48-. http://dx.doi.org/10.1007/BF00427703.

15

Kanamori, T.. (2013). . J. Forensic. Sci., 58, 279-. http://dx.doi.org/10.1111/j.1556-4029.2012.02289.x.

Submission Date
2018-09-07
Revised Date
2018-09-28
Accepted Date
2018-09-28
상단으로 이동

Mass Spectrometry Letters