Article Detail

Home > Article Detail
  • P-ISSN 1010-0695
  • E-ISSN 2288-3339

The Effect of the Salvia miltiorrhiza on Axon RegenerationFollowing Central Nervous System Injury

Journal of Korean Medicine / Journal of Korean Medicine, (P)1010-0695; (E)2288-3339
2008, v.29 no.2, pp.47-59






  • Downloaded
  • Viewed

Abstract

Object: Reactive gliosis that is induced by central nervous system (CNS) injury is involved with up-regulation of CD81 and GFAP. The present study was to examine the effect of the Salvia miltiorrhiza on CD81 and GFAP regulation following brain injury. Methods: Immunoblot and ELISA methods were used to define the level of CD81 and GFAP in the astrocyte cultured from rat brain. Then immunohistochemistry was used to detect CD81 and GFAP in the injured rat brain. Results: The following results were obtained. 1.We did western blot and ELISA to detect the protein isolated from the whole cell and they showed that CD81 and GFAP decreased. 2.We injected Salvia miltiorrhiza extract intravenously to brain-injured rats for 7 days and 30 days, and the immunohistochemistry analyses showed that CD81 and GFAP decreased significantly. Conclusion: These results indicate that Salvia miltiorrhiza could suppress the reactive gliosis, which disturbs the neural regeneration following CNS injury, by controlling the expression of CD81 and GFAP.

keywords
gliosis, CD81, GFAP, salvia miltiorrhiza, CNS injury


Reference

1

1. Caroni P, Schwab ME. Antibody against myelin-associated inhibitor of neurotic growth neurotralizes nonpermissive substrate prope- rties of CNS white matter. Neuron. 1998;1: 85-96.

2

2. McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE. Identification of myelin-associated glycoprotein as a major myelin-derved inhibitor of neurotic growth. Neuron. 1994;13:805-11.(280)

3

3. Asher RA, Fidler PS, Morgenstern DA, Adcock KH., Oohira A, Rogers JH., Fawcett JW, Neurocan is upregulated in injured brain and in cytokine-treated astrocytes, J. Neurosci. 2000;20:2427-38.

4

4. Moon LD, Brecknell JE, Franklin RJM, Dunnett SB, Fawcett JW. Robust regeneration of CNS axons through a track depleted of CNS glia. Exp. Neurol. 1999;161:49-66.

5

5. Fawcett JW, Asher RA, The glia scar and CNS repair. Brain Res. Bull. 1999;49:377-391.

6

6. Fidler PS, Schuette K, Asher RA, Dobberton A, Thornton SR, Calle-Patino Y, Muir E, Levine JM., Geller HM, Rogers JH., Faissner A, Fawcett JW. Comparing astrocytic cells lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan in NG2. J. Neurosci. 1999;19:8778-88.

7

7. Brain Repair Centre, The Axon Regeneration Programme. www.brc.cam.ac.uk/pages/axon_ regeneration_programme.pdf.

8

8. Geisert EE Jr, Yang L, Irwin MH. Astrocyte growth, reactivity, and the target of the antipr- oliferative antibody, TAPA. J Neurosci. 1996; 16:5478-87.

9

9. Dijkstra S, Geisert EJ, Gipsen WH, Bar PR, Joosten EA. Up-regulation of CD81(target of the antiproliferative antibody; TAPA) by reactive microglia and astrocytes after spinal cord injury in the rat. J Comp Neurol. 2000; 428:266-77.

10

10. Geisert EE, Jr., Abel HR, Fan L, Geisert GR. Restinal pigment of the rat express CD81, the target of the antiproliferative antibody(TAPA). Invest Ophthalmol Vis Sci. 2002;43:274-80..

11

11. Dijkstra S, Geisert EE, Jr., Dijkstra CD, Bar PR, Joosten EA. CD81 and microglial activation in vitro proliferation, phagocytosis and nitric oxide production. J Neuroimmunol. 2001;114: 151-59.

12

12. Hemler ME. Specific tetraspanin functions. J Cell Biol. 2001;155:1103-07.

13

13. Boucheix C, Rubinstein E. Tetraspanins. Cell Mol Life Sci. 2001;58:1189-205.

14

14. Zhang XA, Kazarov AR, Yang X, Bontrager AL, Stripp CS, Hemler ME. Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellularmorphogenesis. Mol Biol Cell. 2002;13:1-11.

15

15. Pekny M, Johansson CB, Eliasson C, Stake- berg J, Wallen A, Perlmann T, Lendahl U, Betsholtz C, Berthold CH, Frisen J. Abnormal reaction to central nervous system injury in mice lacking glial fibrilary acidic protein and vimentin. J Cell Biol. 1999;145:503-14.

16

16. Puchala E, Windle WF. The possibility of structural and functional restitution after spinal cord injury. A review. Exp Neurol. 1977;55: -42.

17

17. Guth L, Albuquerque EX, Deshpande SS, Barrett CP, Donati EJ, Warnick JE. Ineffect- eness of enzyme therapy on regeneration in the transected spinal cord of the rat. J Neurosurg. 1980;52:73-86.

18

18. Gimenez y Ribotta M, Rajaofetra N, Morin- Richaud C, Alonso G, Bochelen D, Sandillon F, Legrand A, Mersel M, Privat A. Oxysterol (7 beta-hydroxycholesteryl-3-oleate) promotes serotonergic reinnervation in the lesioned rat spinal cord by reducing glial reaction. J Neurosci Res. 1995;41:79-95.

19

19. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J, Dietrich WD. Systemically administered inter- leukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma. 1999;16:851-863.

20

20. Zhang SX, Geddes JW, Owens JL, Holmberg EG. X-irradiation reduces lesion scarring at the contusion site of adult rat spinal cord. Histol Histopathol. 2005;20:519-530.

21

21. Menet V, Gimenez Y Ribotta M, Sandillon F, Privat A. GFAP null astrocytes are a favorable substrate for neuronal survival and neurite growth. Glia. 2000;31:267-272.

22

22. Dijkstra S, Duis S, Pans IM, Lankhorst AJ, Hamers FP, Veldman H, Bar PR, Gispen WH, Joosten EA, Geisert EE Jr. Intraspinal admini- stration of an antibody against CD81 enhances functional recovery and tissue sparing after experimental spinal cord injury. Exp Neurol. 2006;202:57-66.

23

23. Wong EV, David S, Jacob MH, Jay DG. Inactivation of myelin-associated glycoprotein enhances optic nerve regeneration. J Neurosci. 2003;23:3112-3117.

24

24. Hsu JY, McKeon R, Goussev S, Werb A, Lee JY, Trivedi A, Noble-Haeusslein LJ, Matrix metalloproteinase-2 facilitates wound healing events that prromote function recovery after spinal cord injury. J Neurosci, 2006;26:9841 -50.(281)

25

25. Savio, Schwab ME. Lesioned corticospinal tract axons regenerate in myelin-free rat spinal cord. Proc. Natl. Acad. Sci. USA 1990;87: 4130-4133.

26

26. Eng LF, Ghirnikar RS, Lee YL, Glial fibrillary acidic protein : GFAP-thirty-one-years(1969- 2000). Neurochemical Research. 2000;25: 1439-1451.

27

27. Sarthy V, Ripps H. The Retinal muller cell- structure and Function. Kluwer Academic/ Plenum Press, New york, NY. 2001.

28

28. 신민교, 임상본초학. 서울:영림사. 1997:519 -521.

29

29. Yagi A, Fujimoto K, Tanonaka K, Hirai K, Takep S. Pssible active components of tan-shen (salvia miltiorrhiza) for protection of the myocardium against ischemia-induced derangements, Planta Media. 1989;55:51-54.

30

30. 이종화, 이병찬, 박승택, 이정헌, 이강창, 서부일, 송호준, 단삼이 활성산소로 손상된 배양 심근세포에 미치는 영향, 대한본초학회지. 2003; 18:21-25.

31

31. 김형균, 김형민, 송봉근, 이언정, 정헌택. 한약의 약리. 서울:고려의학. 2000:87-90.

  • Downloaded
  • Viewed
  • 0KCI Citations
  • 0WOS Citations

Other articles from this issue

Recommanded Articles

상단으로 이동

Journal of Korean Medicine