바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Vol.13 No.6

; ; pp.431-450
초록보기
Abstract

When a circular vertical shaft is constructed below the groundwater level, additional forces caused by groundwater flow besides horizontal effective stresses will act on the wall. The inward direction of the groundwater flow will be inclined to the vertical wall and its direction will change depending on the wall depth. In this paper, to figure out the effect of seepage forces acting on the circular vertical shaft, the slope of the inclined flow varying with the depth is divided into vertical and horizontal components to derive the coefficient of earth pressure considering the seepage pressure and to obtain the vertical stress by taking the seepage pressure into account. The control volume in this study is assumed to be the same with that of the dry ground condition within which the earth pressure is acting on the wall by the creation of the plastic zone during shaft excavation. An example study shows that the vertical stress increases by about 1.4 times and the horizontal earth pressure increases up to 2.5 times compared to the dry ground condition. The estimated values from the proposed equation considering seepage forces and the calculated values from numerical analysis with “effective stress+seepage force” show similar values, which verifies appropriateness of the proposed equation to estimate the earth pressure under the seepage condition

; pp.451-462
초록보기
Abstract

The smoke control system plays the most important role in securing evacuation environment when a fire occurs in road tunnels. Smoke control methods in road tunnels are classified into two categories which are longitudinal ventilation system and transverse ventilation system. In this study it is intended to review the characteristics of smoke behavior by performing numerical analysis for calculating the optimal smoke exhaust air volume with scaled-model and simulation when a fire occurs in tunnels in which transverse ventilation is applied, and for obtaining the basic data required for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions for various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than 173 m3/s, 236 m3/s for the distance of the smoke moving which can limit the distance to 250 m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.

; ; ; pp.463-499
초록보기
Abstract

Control of ground water is one of the most important factors for long-term operation of tunnel because most of tunnel is located under the ground water level. In case of drainage tunnel, there is no pore water pressure on the lining when the drained system is properly working. After long-term operation, however, residual pore water pressure can be developed on the lining due to the deterioration of the drainage system. In this study, the water pressure distribution under obstruction condition of drainage material and conduit on the tunnel is numerically investigated using the ICFEP program and compared with the current being applied to the residual water pressure for rational application plan of residual water pressure on the tunnel linings.

; ; ; pp.501-517
초록보기
Abstract

In general, the tunnel stability during excavation is assessed by comparing measured displacements at roof and sidewall to control criteria. The control criteria were established based on past experience that considered ground conditions, size of the tunnel cross section, construction method, supports etc. Therefore, a number of researches on the control criteria using the critical strain have been conducted. However, the critical strain obtained from uniaxial compression tests have drawbacks of not taking damage in rock mass due to increase of stress level and longitudinal arching into account. In this paper, damage-controlled tests simulating stress level and longitudinal arching during tunnel excavation were carried out in addition to uniaxial compression tests to investigate the critical strain characteristics of granite and gneiss that are most abundant rock types in Korean peninsula. Then, the critical strains obtained from damage-controlled tests were compared to those from uniaxial compression tests; the former showed less values than the latter. These results show that the critical strain obtained from uniaxial compression tests has to be reduced a little bit to take stress history during tunnel excavation into account. Moreover, the damage critical strain was proposed to be used for assessment of the brittle failure that usually occurs in deep tunnels.

; ; pp.519-530
초록보기
Abstract

The screw conveyor system installed in EPB Shield TBM chamber was manufactured in small scale for pilot test to investigate the tunnel muck hauling system that could control the earth pressure and support face thrust force. In this experimental study, there were three different test conditions that include screw angles, screw pitch, and screw RPM. Through analysis on test results based on the muck hauling amount per unit time from screw conveyor, the optimum conditions of screw conveyor were proposed to be efficiently performed by the muck processing system. Finally, this study provided the meaningful results such as optimum screw angle, screw RPM, and screw pitch for anti-reverse flow of muck hauling.

; ; ; pp.531-555
초록보기
Abstract

This study aims to derive the statistical models for the estimation of the required specifications of a rock TBM as well as for its cutterhead design suitable for a given rock mass condition. From a series of multi-variate regression analysis of 871 TBM driving data and 51 linear rock cutting test results, the optimum models were newly proposed to consider a variety of rock properties and mechanical cutting conditions. When the derived models were applied to two domestic shield tunnels, their predictions of cutter penetration depth, cutter acting forces and cutter spacing were very close to real TBM driving data, showing their high applicability

; ; ; pp.557-569
초록보기
Abstract

Steel Fiber Reinforced Concrete(SFRC) are widely used for tunnel structures such as shotcrete and segments. Corrosion of steel fibers and steel reinforcements may affect on the long-term durability of the concrete structures with steel fibers and reinforcement. Therefore, a study on the feasible method to evaluate corrosion possibility and permeability of the concrete structures is required. This experimental study examines the effect of steel fibers and internal reinforcement on the surface resistivity. Steel fiber mix ratio and corrosion of internal reinforcement were considered as variables. In the results, steel fibers significantly reduce the surface resistivity due to those conductive characteristic. In the case of 3% mix ratio, it was difficult to evaluate rate and permeability of corrosion due to the great reduction of resistivity by mixing of steel fibers.

(사)한국터널지하공간학회