바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Vol.14 No.5

; ; ; pp.453-467
초록보기
Abstract

Usage of underground space is increasing at metropolitan city. More than 90% of flood damages have occurred at downtown of metropolitan cities. In order to prevent and/or minimize the flood-induced damage, an underground rainwater detention cavern was proposed to be built underneath existing structures. As for underground caverns to be built for flood control, multi-caverns will be mostly adopted rather than one giant cavern because of stability problem. Because of the stress concentration occurring in the pillars between two adjacent caverns, the pillar-stability is the Achilles' heel in multi-caverns. So, a new pillar-reinforcing technology was proposed in this paper for securing the pillar-stability. In the new pillar-reinforcing technology, reinforced materials which are composed of a steel bar and PC strands are used by applying pressurized grouting, and then, by applying the pre-stress to the PC strands and anchor body. Therefore, this new technology has an advantage of utilizing most of the strength that the in-situ ground can exert, and not much relying on the pre-cast concrete structure. The main effect of the pressurized grouting is the increase of the ground strength and more importantly the decrease of stress concentration in the pillar; that of the pre-stress is the increase of the ground strength due to the increase of the internal pressure. In this paper, ground reinforcing effects were verified the stress change in pillar is obtained by numerical analysis at each construction stage. From these results, the effects of pressurized grouting and pre-stress are verified.

; ; ; ; ; pp.469-484
초록보기
Abstract

This study aims to numerically investigate ground movement around a square steel pipe as well as a group of square steel pipes induced by its and their ground penetration for trenchless construction of a concrete box. From numerical results, ground movement induced by a square steel pipe is much more dominantly governed by vertical displacement rather than horizontal displacement. Ground settlement induced by pipe penetration is much larger as the overburden becomes lower. The settlement is also shown to be slightly dependent upon the sequence of pipe penetration. More careful construction management is highly in demand during the penetration of upper pipes since their induced settlement occupies approximately 75 percent of total ground settlement after the whole construction of steel pipes.

; ; ; ; ; pp.485-501
초록보기
Abstract

This study aims to experimentally investigate ground settlement and ground movement around the square pipe by its penetration in sandy ground. A series of laboratory model tests were carried out with a small-scale auger equipment for penetration of a square pipe as well as a newly designed test box with a sand raining equipment. From the experiments, it is shown that a square pipe induces ground movement evenly around it in a low overburden condition. However, as the overburden becomes higher, ground movement by a square pipe is concentrated mainly above it. Especially, horizontal strain above the square pipe was mainly dominated by its penetration. In addition, sand surface movement is the smallest in case of the dimensionless penetration rate equal to 0.2. When its penetration rate of the square pipe is fixed, the rotation speed of auger controls surface movement whether it is settlement or heaving. Therefore, the selection of an optimal dimensionless rate for the square pipe is a key design factor to minimize ground settlement in a trenchless construction.

; ; ; ; ; pp.503-516
초록보기
Abstract

Rock mass rating (RMR) is the key factor when designing the appropriate support pattern of tunnel projects. Borehole drilling is usually performed along the tunnel route in order to determine the rock mass rating to be used for tunnel design. The rock mass rating at the non-boring region between boreholes is usually assessed through geophysical surveys such as electrical prospecting, seismic prospecting, etc. Many studies were carried out to find out the correlation between electrical resistivity and rock mass rating. However, most researches were aimed at obtaining the relationship between the two parameters utilizing experimental results obtained from laboratory tests or electrical prospectings. In this paper, efforts were made to analyze and obtain relationships between the electrical resistivity obtained from in-situ electrical resistivity logging data and the rock mass rating. Correlation studies using field data showed that the electrical resistivity is highly correlated with the rock mass rating with the determination coefficient more than 90%. The correlation analysis was also carried out between RMR classification parameters and the electrical resistivity. It was shown that the correlation between the condition of discontinuities and the electrical resistivity was very high with the determination coefficient more than 80%; that between the groundwater condition and the electrical resistivity was very low with the determination coefficient less than 57%.

; pp.517-528
초록보기
Abstract

Inserting a nozzle assembly into a removed cutting space during a continuous cutting operation is necessary in rock excavation using an abrasive waterjet. In this study, a combined two nozzle assembly is used to secure enough removal width. The shape of the cut space is affected by the geometric parameters (standoff distance, nozzle angle, and vertical distance between the nozzle tips) of the combined nozzle assembly. Abrasive waterjet cutting tests are performed with various geometric parameters for granite rock specimens. Optimized geometric parameters for the nozzle inserting process are determined and verified through the experimental tests

pp.529-545
초록보기
Abstract

Three-dimensional (3D) finite element analyses have been performed to study the behaviour of a single pile to open face tunnelling in stiff clay. Several key factors such as tunnelling-induced ground and pile settlement, and shear transfer mechanism have been studied in detail. Tunnelling resulted in the development of pile settlement larger than the Greenfield soil surface settlement. In addition, due to changes in the shear transfer between the pile and the soil next to the pile with tunnel advancement, axial force distributions along the pile change drastically. The apparent allowable pile capacity was reduced up to about 30% due to the development of tunnelling-induced pile head settlement. The skin friction on the pile was increased with tunnel advancement associated with the changes of soil stresses and ground deformation and hence axial pile force distribution was reduced. Maximum tunnelling-induced tensile force on the pile was about 21% of the designed pile capacity. The zone of influence on the pile behaviour in the longitudinal direction may be identified as ±1-2D (D: tunnel diameter) from the pile centre (behind and ahead of the pile axis in the longitudinal direction) based on the analysis conditions assumed in the current study. Negative excess pore pressure was mobilised near the pile tip, while positive excess pore pressure was computed at the upper part of the pile. It has been found that the serviceability of a pile experiencing adjacent tunnelling is more affected by pile settlement than axial pile force changes.

; ; ; ; pp.547-559
초록보기
Abstract

The concrete structural design in domestic has based on the allowable stress design (ASD) method and ultimate strength design (USD) method. Recently limit state design (LSD) method has issued and attempted to adopt in geotechnical design. Because ASD method and USD method have restriction in economic design. In this study, the generated member forces were calculated about high strength concrete segment lining based on japanese LSD code. And it compared with domestic USD code for identifying the economic design possibility of LSD and domestic applicability. In analysis results, the aspect of moment had generated similarly each other but the member forces of japanese LSD code were decreased (26.0% of moment and 26.7% of shear force) comparing with USD method. For that reason, possibility of economic segment design with stable condition were identified.

(사)한국터널지하공간학회