바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Vol.7 No.4

; ; (Purdue University) pp.269-283
초록보기
Abstract

To figure out the cause of underestimating the roughness and shear strength of rock joints suggested by numerous researchers, we analyzed roughness mobilization characteristics, characteristics of roughness parameters, effects of sampling interval, and waviness for roughness parameters. It was found out that lack of understanding of the roughness mobilization characteristics, inappropriate applications of roughness parameters, and effect of aliasing provide a main reasons for those problems. Several practical alternatives for improving those problems were suggested. As far as digitizing methods are concerned, we can find that using a 3D scanner can give a relatively effective result. To avoid aliasing, sampling interval should be less than one-quarter of the minimum asperities. As for the quantification of roughness, it was analyzed that the roughness parameter should be classified into two components depending on the scale of roughness to apply the shear strength model. For classifying the roughness, a framework of the criterion was suggested based on the plastic flow concept for the asperity failure, and the basis for proposing a new alternative shear strength model was established.

; pp.285-294
초록보기
Abstract

The behaviors of the ground in crossed zone and the existing upper tunnel in shallow cover due to the excavation of new lower tunnel crossed to that was studied. Model test was performed in the large scale test pit, the size was 4.0m (width)×3.8m (height)×4.1m (length)'. Test ground was constructed uniformly by sand in middle density and test with the crossed angle of 56 (obliquely) were performed. The numerical analysis was performed on equal condition with model test. Results of the study by model test and numerical analysis show that earth pressure and settlement of the ground in crossed zone were redistributed due to the longitudinal arching effect by the excavation of lower tunnel. Model test shows that upper tunnel blocks stress flow due to the longitudinal arching effect by excavation of lower tunnel.

; ; ; pp.295-304
초록보기
Abstract

The smoke propagating distances are measured in case that a fire occurs within the subway railroad tunnel. The tunnel is 800m long and the dimension of the cross-section is 8 5.5m. Three vertical shafts exist for smoke ventilation. The experiments are performed using the 1/50 reduced- scale model. The smoke propagating distances are measured by thermocouples and by visualization for the accuracy. In order to understand the effect of a fire size and ventilation capacity of the shafts on the smoke propagating distance, 9 test scenarios are chosen. Based on the results, the smoke propagating distance is shown to be important criteria for the ventilation design of the tunnel.

; ; pp.305-311
초록보기
Abstract

Shotcrete adhesive strength in large section tunnels in jointed rock masses plays an important role in preventing rock block from falling and shotcrete debonding due to blasting vibration. Nevertheless, it has not been considered as a major factor such as shotcrete compressive strength in design and construction. For this reason, the purpose of this study is to analyze the effect on shotcrete adhesive strength for large-sectioned tunnels. First, the parametric study using numerical model similar to Holmgren's punch-loaded test was executed for various range of adhesive strength. It shows that the shotcrete bearing capacity is linearly proportioned to the adhesive strength between shotcrete layer and blocks. And then, distinct element analysis of a jointed rock tunnel for an adhesive strength of 1 MPa and a conventional fully-bonded condition between the shotcrete layer and the excavation face was compared in order to evaluate the effect of the shotcrete adhesive strength.

; pp.313-321
초록보기
Abstract

Drag coefficient is one of the critical design factors to quantify the piston effect in vehicle tunnels. Several problems are raised on the drag coefficient currently applied for the ventilation system design; unverified adoption of the projected frontal area of the vehicle from the foreign study in the past, and lack of consideration for the slip-streaming effect. This study aims at better estimation of the traffic-induced ventilation force in the local tunnels. Values for the projected frontal area of the vehicles running on the local roads at present are proposed and results of an extensive CFD study are studied on the slip-streaming effects in various traffic conditions to quantify Kblockage and the drag coefficient in the domestic tunnels.

; ; ; pp.323-333
초록보기
Abstract

Recently the fire is happening at the tunnel and underground - structure internationally. We are socially the economy the actual circumstances which serious loss is happening due to an fire occurrence when fire happened which is closed like tunnel and underground - structure, the collapse from the burglar degradation of strength of tunnel concrete lining and human life damage happen. It causes big problem while the long time disconnects a traffic network. While the fire happened in this research at the tunnel, the paper construct a basis data to deduce the specification regulation about stability of tunnel concrete lining. In this paper, the experiment was carried out for the prevention of explosive spalling of tunnel to use a reinforced Polypropylene concrete which mixes a Polypropylene which are known for the thing by being efficient at a protect of explosive spalling of the concrete. According to the firproof test result of reinforced Polypropylene admixture mortar, Polypropylene admixture of prevention of explosive spalling analyzed 0.2%-0.25%.

; pp.335-341
초록보기
Abstract

In construction of a large cross section NATM tunnel, to keep the tunnel face stability by the ground itself bench cut method is commonly used. In order to necessity of partial face excavation method, we have to look for more enhanced method that can maintain better stress intensity. This paper presents a stress distribution of the Center Diaphragm Method from the partial face excavation methods, with the numerical analysis, and induced the optimal face distance, which is minimizing stress concentration and the optimal excavation step. Commerical 3 dimensional continuum analyzing FLAC-3D Ver. 2.1 program is used for the analysis. Analyses were performed to investigate ground behavior for tunnels with variable bench-length varying from 2m to 40m.

pp.343-352
초록보기
Abstract

In this study, the existing methods proposed to estimate the relaxed load due to a tunnel excavation are compared and analyzed. Also a new approach, by which the stress relaxed zone around an excavated tunnel periphery can be systematically estimated, was suggested for the design of 2- arch tunnel lining. To this end, local factors of safety are calculated from the redistributed stresses after the excavation of a tunnel. The height of the relaxed load is inferred based on the assumption that the stress relaxed zone might coincide with the region corresponding to the local safety factor of 2.0 or 3.0. The new approach proposed in this study has the advantage of estimating the height of the relaxed load independent of the shape of a tunnel and the ground conditions. Since the height of the relaxed load is estimated according to the local factor of safety, which is a relatively clear criterion, the designer's subjectivity involved in the design of concrete tunnel lining might be reduced.

(사)한국터널지하공간학회