바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Vol.9 No.1

JUNG, In-Chul ; KIM, Yeun-Su ; IM, Sae-Ran ; IHM, Chun-Hwa pp.1-7 https://doi.org/https://doi.org/10.24225/kjai.2021.9.1.1
초록보기
Abstract

In this paper, We focused the issue of creating a socially problematic nurse schedule. The nurse schedule should be prepared in consideration of three shifts, appropriate placement of experienced workers, the fairness of work assignment, and legal work standards. Because of the complex structure of the nurse schedule, which must reflect various requirements, in most hospitals, the nurse in charge writes it by hand with a lot of time and effort. This study attempted to automatically create an optimized nurse schedule based on legal labor standards and fairness. We developed an I/O Q-Learning algorithm-based model based on Python and Web Application for automatic nurse schedule. The model was trained to converge to 100 by creating an Fairness Indicator Score(FIS) that considers Labor Standards Act, Work equity, Work preference. Manual nurse schedules and this model are compared with FIS. This model showed a higher work equity index of 13.31 points, work preference index of 1.52 points, and FIS of 16.38 points. This study was able to automatically generate nurse schedule based on reinforcement Learning. In addition, as a result of creating the nurse schedule of E hospital using this model, it was possible to reduce the time required from 88 hours to 3 hours. If additional supplementation of FIS and reinforcement Learning techniques such as DQN, CNN, Monte Carlo Simulation and AlphaZero additionally utilize a more an optimized model can be developed.

AN, Su Hyun ; YEO, Seong Hee ; KANG, Minsoo pp.9-14 https://doi.org/https://doi.org/10.24225/kjai.2021.9.1.9
초록보기
Abstract

This paper predicted a model that indicates whether to buy a car based on primary health insurance customer data. Currently, automobiles are being used to land transportation and living, and the scope of use and equipment is expanding. This rapid increase in automobiles has caused automobile insurance to emerge as an essential business target for insurance companies. Therefore, if the car insurance sales are predicted and sold using the information of existing health insurance customers, it can generate continuous profits in the insurance company's operating performance. Therefore, this paper aims to analyze existing customer characteristics and implement a predictive model to activate advertisements for customers interested in such auto insurance. The goal of this study is to maximize the profits of insurance companies by devising communication strategies that can optimize business models and profits for customers. This study was conducted through the Microsoft Azure program, and an automobile insurance purchase prediction model was implemented using Health Insurance Cross-sell Prediction data. The program algorithm uses Two-Class Logistic Regression and Two-Class Boosted Decision Tree at the same time to compare two models and predict and compare the results. According to the results of this study, when the Threshold is 0.3, the AUC is 0.837, and the accuracy is 0.833, which has high accuracy. Therefore, the result was that customers with health insurance could induce a positive reaction to auto insurance purchases.

KIM, Kyoung-Sook ; JEONG, Yeong-Hoon pp.15-20 https://doi.org/https://doi.org/10.24225/kjai.2021.9.1.15
초록보기
Abstract

This paper was conducted to prevent and respond to crimes by predicting crimes based on artificial intelligence. While the quality of life is improving with the recent development of science and technology, various problems such as poverty, unemployment, and crime occur. Among them, in the case of crime problems, the importance of crime prediction increases as they become more intelligent, advanced, and diversified. For all crimes, it is more critical to predict and prevent crimes in advance than to deal with them well after they occur. Therefore, in this paper, we predicted crime types and crime tools using the Multiclass Logistic Regression algorithm and Multiclass Neural Network algorithm of machine learning. Multiclass Logistic Regression algorithm showed higher accuracy, precision, and recall for analysis and prediction than Multiclass Neural Network algorithm. Through these analysis results, it is expected to contribute to a more pleasant and safe life by implementing a crime prediction system that predicts and prevents various crimes. Through further research, this researcher plans to create a model that predicts the probability of a criminal committing a crime again according to the type of offense and deploy it to a web service.

MUN, Ji-Hui ; JUNG, Sang Woo pp.21-27 https://doi.org/https://doi.org/10.24225/kjai.2021.9.1.21
초록보기
Abstract

In this Paper, Since the 1990s, Korea's credit card industry has steadily developed. As a result, various problems have arisen, such as careless customer information management and loans to low-credit customers. This, in turn, had a high delinquency rate across the card industry and a negative impact on the economy. Therefore, in this paper, based on Azure, we analyze and predict the delinquency and delinquency periods of credit loans according to gender, own car, property, number of children, education level, marital status, and employment status through linear regression analysis and enhanced decision tree algorithm. These predictions can consequently reduce the likelihood of reckless credit lending and issuance of credit cards, reducing the number of bad creditors and reducing the risk of banks. In addition, after classifying and dividing the customer base based on the predicted result, it can be used as a basis for reducing the risk of credit loans by developing a credit product suitable for each customer. The predicted result through Azure showed that when predicting with Linear Regression and Boosted Decision Tree algorithm, the Boosted Decision Tree algorithm made more accurate prediction. In addition, we intend to increase the accuracy of the analysis by assigning a number to each data in the future and predicting again.

KIM, Song-Eun ; CHOI, Jeong-Hyun ; KANG, Minsoo pp.29-35 https://doi.org/https://doi.org/10.24225/kjai.2021.9.1.29
초록보기
Abstract

In this paper, we analyzed the factors of adoption and implemented a predictive model to activate the adoption of animals. Recently, animal shelters are saturated due to the abandonment and loss of companion animals. To address this, we need to find a way to encourage adoption. In this paper, a study was conducted using two data from an open data portal provided by Austin, Texas. First, a correlation analysis was conducted to identify the attributes that affect the result value, and it was found that Animal Type Intake, Intake Type, and Age upon Outcome influence the Outcome Type with correlation coefficients of 0.4, 0.26, and -0.2, respectively. For these attributes, the analysis was conducted using Multiclass Logistic Regression. As a result, dogs had a higher probability of Adoption than cats, and animals subjected to euthanasia were more likely to adopt. In the case of Public Assist and Stray, it was found that the Missing rate was high. Also, the length of stay for cats increased to 12.5 years of age, while dogs generally adopted smoothly at all ages. These results showed an overall accuracy of 62.7% and an average accuracy of 91.7%, showing a fairly reliable result. Therefore, it seems that it can be used to develop a plan to promote the adoption of animals according to various factors. Also, it can be expanded to various services by interlocking with the webserver.

Korean Journal of Artificial Intelligence