본 연구는 이메일에 나타난 감성정보 메타데이터 추출에 있어 자연언어처리에 기반한 방식을 적용하였다. 투자분석가와 고객 사이에 주고받은 이메일을 통하여 개인화 정보를 추출하였다. 개인화란 이용자에게 개인적으로 의미 있는 방식으로 컨텐츠를 제공함으로써 온라인 상에서 관계를 생성하고, 성장시키고, 지속시키는 것을 의미한다. 전자상거래나 온라인 상의 비즈니스 경우, 본 연구는 대량의 정보에서 개인에게 의미 있는 정보를 선별하여 개인화 서비스에 활용할 수 있도록, 이메일이나 토론게시판 게시물, 채팅기록 등의 텍스트를 자연언어처리 기법에 의하여 자동적으로 메타데이터를 추출할 수 있는 시스템을 구현하였다. 구현된 시스템은 온라인 비즈니스와 같이 커뮤니케이션이 중요하고, 상호 교환되는 메시지의 의도나 상대방의 감정을 파악하는 것이 중요한 경우에 그러한 감성정보 관련 메타데이터를 자동으로 추출하는 시도를 했다는 점에서 연구의 가치를 찾을 수 있다.
This paper describes a metadata extraction technique based on natural language processing (NLP) which extracts personalized information from email communications between financial analysts and their clients. Personalized means connecting users with content in a personally meaningful way to create, grow, and retain online relationships. Personalization often results in the creation of user profiles that store individuals preferences regarding goods or services offered by various e-commerce merchants. We developed an automatic metadata extraction system designed to process textual data such as emails, discussion group postings, or chat group transcriptions. The focus of this paper is the recognition of emotional contents such as mood and urgency, which are embedded in the business communications, as metadata.
N. 1992. MUC-4 Evaluation Metrics. Proceedings of the Fourth Message Understand-ing Conference. , -.
Some universals in language usage. Cambridge University Press.. , -.
(2004). A probabilistic framework for recognizing and affecting emotions. Proceedings of the AAAI 2004 Spring Symposium on Architectures for Modeling Emotions. , -.
(2005). An exploration of human emotion perception from short texts. Artificial Intelli-gence and Psychology Project Report.. , -.
(2004). Emotions: From brain to robot. Trends in Cognitive Science. 8(12), 554-561.
(2003). Perception of e-mail personality at zeroacquaintance Extraver-sion takes care of itself but neuroticism is more of a worry. Proceedings of the 25th Annual Conference of the Cognitive Science Society. , 456-461.
(2004). BDIE: a BDI like architecture with emotional capabilities. Architectures for modeling emotion: Cross-Disciplinary founda-tions. , -.
(2000). Flaming: A white paper. , -.
(2002). Combining acoustic and language informa-tion for emotion recognition. Proceedings of International Conference on Spoken Language Processing. , 873-876.
MUC-3 1991. Proceedings of the Third Message Understanding Conference. San Diego. , -.
MUC-4 1992. Proceedings of the Fourth Message Understanding Conference. McLean. , -.
MUC-5 1993. Proceedings of the Fifth Message Understanding Conference. Baltimore. , -.
(1995). Proceedings of the Sixth Message Understanding Conference. Columbia. , -.
Automated Tools for Building and Extending Clinical Methods. In Hammond. , -.
(2000). CHronological information Extraction SyStem (CHESS).. , -.
(2006.). Online Available http://www.eudora.com/email/features/moodwatch.html. , -.
(2004). Discerning emotions in texts. Proceeding of the 2004 AAAI Symposium on Exploring Attitude and Affect in Text. , -.
Computer Man-agement of Narrative Data. Reading. , -.
(usa.). J.R. 1969. Speech Acts an Essay in the Philosophy of Language. Cambridge University Press. NY. , -.
(2000). There Are Myriad Ways to Get Personal. Internet Week Online. , -.
A. 1985. Toward a consensual structure of mood. Psychological Bulle-tin. , 219-235.
(2003). Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. , -.
(2000). Do you know what personalization means? Gartner Group T-10-9346.. , -.