바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
  • KCI

토픽모델링을 활용한 국내 문헌정보학 연구동향 분석

A Study on the Research Trends in Library & Information Science in Korea using Topic Modeling

정보관리학회지 / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2013, v.30 no.1, pp.7-32
https://doi.org/10.3743/KOSIM.2013.30.1.007
박자현 (연세대학교)
송민 (연세대학교)

초록

본 연구는 국내 문헌정보학 분야의 연구동향을 규명하기 위하여 문헌정보학 주요 학술지인, 정보관리학회지, 한국문헌정보학회지, 한국도서관․정보학회지, 한국비블리아학회지의 1970년도부터 2012년도까지 발표 논문 초록을 수집하여 LDA(Latent Dirichlet Allocation)기반의 토픽 모델링 실험을 수행하였다. 그 결과를 종합하면 다음과 같다. 첫째, 토픽모델링 실험에서 도출된 연구주제를 문헌정보학 주제분류표와 비교․분석한 결과, ‘정보학’영역의 디지털도서관, 이용연구, 인터넷, 전문가시스템, 계량정보학, 자동화, 정보검색, 정보시스템, ‘도서관 서비스’영역의 정보서비스, 도서관 유형별 서비스, 이용자 교육/정보리터러시, 서비스 평가, ‘문헌정보학 기초’영역의 도서관과 사회, 전문성, ‘자료조직’영역의 분류, 편목, 메타데이터, ‘도서관 경영’영역의 도서관 평가, 장서개발/관리, ‘서지학’영역의 고서지, ‘도서관 체제’영역의 도서관 및 정보정책, ‘출판’영역의 도서/출판, ‘기록관리학’영역의 하위주제 등과 연결할 수 있었다. 또한 가장 많은 연구주제가 발견된 학문영역은 정보학과 도서관서비스로 나타났다. 둘째, 문헌정보학의 주요 연구주제에서 도서관 유형별 서비스 및 평가, 인터넷, 메타데이터의 연구주제는 상승세를 보였으나, 도서, 분류, 편목, 고서지에 관한 연구주제는 하강세를 보였다. 셋째, 학술지를 구분하여 비교․분석한 결과, 정보관리학회지는 도서관에 관한 연구주제보다 정보학에 관한 연구주제가 많이 출현하였고, 한국문헌정보학회지와 한국도서관․정보학회지, 한국비블리아학회지는 도서관에 관한 연구주제가 정보학에 관한 주제보다 많이 나타났다.

keywords
library and information science, research trends, topic modeling, text mining, latent Dirichlet allocation, 문헌정보학, 연구동향, 토픽모델링, 텍스트 마이닝, LDA

Abstract

The goal of the present study is to identify the topic trend in the field of library and information science in Korea. To this end, we collected titles and abstracts of the papers published in four major journals such as Journal of the Korean Society for information Management, Journal of the Korean Society for Library and Information Science, Journal of Korean Library and Information Science Society, and Journal of the Korean BIBLIA Society for library and Information Science during 1970 and 2012. After that, we applied the well-received topic modeling technique, Latent Dirichlet Allocation(LDA), to the collected data sets. The research findings of the study are as follows: 1) Comparison of the extracted topics by LDA with the subject headings of library and information science shows that there are several distinct sub-research domains strongly tied with the field. Those include library and society in the domain of “introduction to library and information science,” professionalism, library and information policy in the domain of “library system,” library evaluation in the domain of “library management,” collection development and management, information service in the domain of “library service,” services by library type, user training/information literacy, service evaluation, classification/cataloging/meta-data in the domain of “document organization,” bibliometrics/digital libraries/user study/internet/expert system/information retrieval/information system in the domain of “information science,” antique documents in the domain of “bibliography,” books/publications in the domain of “publication,” and archival study. The results indicate that among these sub-domains, information science and library services are two most focused domains. Second, we observe that there is the growing trend in the research topics such as service and evaluation by library type, internet, and meta-data, but the research topics such as book, classification, and cataloging reveal the declining trend. Third, analysis by journal show that in Journal of the Korean Society for information Management, information science related topics appear more frequently than library science related topics whereas library science related topics are more popular in the other three journals studied in this paper.

keywords
library and information science, research trends, topic modeling, text mining, latent Dirichlet allocation, 문헌정보학, 연구동향, 토픽모델링, 텍스트 마이닝, LDA

참고문헌

1.

김판준. (2007). 연구 영역 분석을 위한 디스크립터 프로파일링에 관한 연구. 정보관리학회지, 24(4), 285-303.

2.

서은경. (1997). 정보학분야 연구동향 분석 : 정보관리학회지와 JASIS의 비교분석을 중심으로. 정보관리학회지, 14(1), 269-291.

3.

서은경. (2010). 『정보관리학회지』 연구의 동향분석. 정보관리학회지, 27(4), 7-32.

4.

손정표. (2003). 한국의 문헌정보학분야 연구동향 분석 : 1957~2002. 한국도서관·정보학회지, 34(3), 9-32.

5.

오세훈. (2005). 우리나라 문헌정보학 학술지 논문 및 인용문헌 분석을 통한 연구동향 연구. 정보관리학회지, 22(3), 379-408.

6.

오세훈. (2005). 우리나라의 정보학 연구 동향에 관한 연구. 정보관리학회지, 22(1), 167-189.

7.

이재윤. (2007). 텍스트 마이닝을 이용한 국내 기록관리학 분야 지적구조 분석. 한국문헌정보학회지, 41(1), 345-372.

8.

정재영. (2011). 한국 문헌정보학의 현장연구 현황 분석. 한국도서관·정보학회지, 42(2), 171-191.

9.

정진식. (2001). 한국 문헌정보학 분야의 연구동향 분석, 1996-2000. 한국문헌정보학회지, 35(3), 55-78.

10.

조재인. (2011). 네트워크 텍스트 분석을 통한 문헌정보학 최근 연구 경향 분석. 정보관리학회지, 28(4), 65-83.

11.

한상완. (1996). 문헌정보학분야 학회지의 논문분석. 도서관, 51(1), 114-139.

12.

Blei, D.. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

13.

Griffiths, T.. (2004). Finding scientific topics (5228-5235). PNAS.

14.

Kao, A.. (2007). Natural language processing and text mining:Springer-Verlag.

15.

Kim, Heejung. (2009). Archiving research trends in LIS domain using profiling analysis. Scientometrics, 80(1), 75-90.

16.

Mimno, D.. (2008). Topic models conditioned on arbitrary features with Dirichletmultinomial regression (411-418). Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence (UAI 2008).

17.

Song, Min. Detecting the knowledge structure of bioinformatics by mining full-text collections. Scientometrics, , -.

18.

Wang, X.. (2006). Topics over time: A non-Markov continuous-time model of topical trends (424-433). Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’06).

정보관리학회지