바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
  • KCI

데이터 인용의 현황과 제언

The Current State and Recommendations for Data Citation

정보관리학회지 / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2017, v.34 no.1, pp.7-29
https://doi.org/10.3743/KOSIM.2017.34.1.007
김지현 (이화여자대학교)
정은경 (이화여자대학교)
윤정원 (University of South Florida)
이재윤 (명지대학교)

초록

학술 커뮤니티 내에서 논문의 인용은 보편적인 규범으로 자리 잡은 데 비해 데이터의 인용은 아직 초보적인 단계에 머물러 있다. 이를 개선하기 위해 제기되고 있는 데이터 인용의 필요성 및 원칙과 가이드라인에 대해서 살펴보았다. 또한 데이터 인용체계 구축 사례에서는 데이터 인용 요소들을 정의하고 서비스를 제공하는 DataCite, Dataverse Network, Data Citation Index 사례를 중심으로 살펴보았다. 마지막으로 한국종합사회조사 데이터 인용 분석을 통해 국내 데이터세트 인용/이용 정보 제공 실태를 조사하였다.

keywords
data citation, citation guideline, dataset, research data, Korean General Social Survey, 데이터 인용, 인용지침, 데이터세트, 연구 데이터, 한국종합사회조사

Abstract

Data citation remains in its infancy, although providing the citation to a journal article is a typical norm in an academic community. This study examines the need for data citation, its principles and guidelines for improving the issue. In addition, the study investigates cases that established data citation mechanism, including DataCite, Dataverse Network and Data Citation Index that define elements of data citation and provide relevant services. At the end, it explores the current state of data citation in Korea through the analysis of citations to dataset from Korean General Social Survey.

keywords
data citation, citation guideline, dataset, research data, Korean General Social Survey, 데이터 인용, 인용지침, 데이터세트, 연구 데이터, 한국종합사회조사

참고문헌

1.

기초학문자료센터 홈페이지. http://www.krm.or.kr/.

2.

김상욱. (2007). 한국종합사회조사 2007:성균관대학교 출판부.

3.

김솔이. (2016). 한국종합사회조사 이용 문헌자료집. http://kgss.skku.edu/wp-content/uploads/2016/06/Bib-최종290616.pdf.

4.

신영란. (2012). 국내 인문사회 연구데이터 아카이브의 개선방안에 관한 연구. 한국기록관리학회지, 12(3), 93-115.

5.

심원식. (2015). 인문학 분야 연구데이터의 수집 및 활용성 증진을 위한 전략 연구 - 기초학문자료센터를 중심으로 -. 한국문헌정보학회지, 49(3), 155-183. http://dx.doi.org/10.4275/KSLIS.2015.49.3.155.

6.

조재인. (2016). Data Citation Index를 기반으로 한 연구데이터 인용에 관한 연구. 한국문헌정보학회지, 50(1), 189-207. http://dx.doi.org/10.4275/KSLIS.2016.50.1.189.

7.

한국사회과학자료원 홈페이지. http://www.kossda.or.kr/.

8.

한국학술지인용색인 홈페이지. http://www.kci.go.kr/.

9.

Andrew Appleton. (2008). The Dataverse Network Project: A New Architecture for Data Citation and Data-Sharing. French Politics, 6(2), 178-186. http://dx.doi.org/10.1057/fp.2008.7.

10.

Arend, D.. (2016). PGP repository: A plant phenomics and genomics data publication infrastructure. Database, , baw033-. http://dx.doi.org/10.1093/database/baw033.

11.

Daniel Arend. (2014). e!DAL - a framework to store, share and publish research data. BMC Bioinformatics, 15(1), 214-. http://dx.doi.org/10.1186/1471-2105-15-214.

12.

Ball, A.. (2015). How to cite datasets and link to publications. Digital Curation Centre.

13.

Brase, J.. (2009). Datacite: A global registration agency for research data (257-261). Proceedings of the 4th Cooperation and Promotion of Information Resources in Science and Technology.

14.

Jan Brase. (2015). The Tenth Anniversary of Assigning DOI Names to Scientific Data and a Five Year History of DataCite. D-Lib Magazine, 21(1/2), -. http://dx.doi.org/10.1045/january2015-brase.

15.

Sarah Callaghan. (2014). Preserving the integrity of the scientific record: data citation and linking. Learned Publishing, 27(5), 15-24. http://dx.doi.org/10.1087/20140504.

16.

Tiffany C. Chao. (2011). Disciplinary reach: Investigating the impact of dataset reuse in the earth sciences. Proceedings of the American Society for Information Science and Technology, 48(1), 1-8. http://dx.doi.org/10.1002/meet.2011.14504801125.

17.

Clarivate Analytics. The Data Citation Index: Connecting the data to the research it informs. http://wokinfo.com/products_tools/multidisciplinary/dci/.

18.

CODATA-ICSTI Task Group on Data Citation Standards and Practices. (2013). Out of cite, out of mind: The current state of practice, policy, and technology for the citation of data. Data Science Journal, 12, CIDCR1-CIDCR75.

19.

Mercè Crosas. (2011). The Dataverse Network®: An Open-Source Application for Sharing, Discovering and Preserving Data. D-Lib Magazine, 17(1/2), -. http://dx.doi.org/10.1045/january2011-crosas.

20.

Merce Crosas. (2012). A Data Sharing Story. Journal of eScience Librarianship, 1(3), 173-179. http://dx.doi.org/10.7191/jeslib.2012.1020.

21.

Data Citation Synthesis Group. (2014). Joint declaration of data citation principles:FORCE11.

22.

Dataverse.org. (2016). The dataverse project. http://dataverse.org/.

23.

Laura Drăgan. (2015). A-posteriori Provenance-enabled Linking of Publications and Datasets Via Crowdsourcing. D-Lib Magazine, 21(1/2), -. http://dx.doi.org/10.1045/january2015-dragan.

24.

FORCE11. (2016). About FORCE 11. https://www.force11.org/about.

25.

Kerstin Helbig. (2015). Supporting Data Citation: Experiences and Best Practices of a DOI Allocation Agency for Social Sciences. Journal of Librarianship and Scholarly Communication, 3(2), eP1220-. http://dx.doi.org/10.7710/2162-3309.1220.

26.

Maarten Hoogerwerf. (2013). Linking Data and Publications: Towards a Cross-Disciplinary Approach. International Journal of Digital Curation, 8(1), 244-254. http://dx.doi.org/10.2218/ijdc.v8i1.257.

27.

Gary King. (2016). An Introduction to the Dataverse Network as an Infrastructure for Data Sharing. Sociological Methods & Research, 36(2), 173-199. http://dx.doi.org/10.1177/0049124107306660.

28.

Kotarski, R.. (2012). Best practices for citability of data and evolving roles in scholarly communication. https://core.ac.uk/download/files/324/30437756.pdf.

29.

Leeper, T. J.. (2014). Archiving reproducible research with R and Dataverse. The R Journal, 6(1), 151-158.

30.

Matthew S. Mayernik. (2012). Data citation initiatives and issues. Bulletin of the American Society for Information Science and Technology, 38(5), 23-28. http://dx.doi.org/10.1002/bult.2012.1720380508.

31.

McAdoo, T.. (2013). How to cite a data set in APA style. http://blog.apastyle.org/apastyle/2013/12/how-to-cite-a-data-set-in-apa-style.html.

32.

Victor Menaldo. (2016). The Fiscal Roots of Financial Underdevelopment. American Journal of Political Science, 60(2), 456-471. http://dx.doi.org/10.1111/ajps.12240.

33.

Michigan State University Libraries. (2016). How to cite data: General info. http://libguides.lib.msu.edu/citedata.

34.

Hailey Mooney. (2012). The Anatomy of a Data Citation: Discovery, Reuse, and Credit. Journal of Librarianship and Scholarly Communication, 1(1), eP1035-. http://dx.doi.org/10.7710/2162-3309.1035.

35.

Mark A. Parsons. (2010). Data Citation and Peer Review. Eos, Transactions American Geophysical Union, 91(34), 297-298. http://dx.doi.org/10.1029/2010eo340001.

36.

Isabella Peters. (2016). Research data explored: an extended analysis of citations and altmetrics. Scientometrics, 107(2), 723-744. http://dx.doi.org/10.1007/s11192-016-1887-4.

37.

Heather A. Piwowar. (2013). Data reuse and the open data citation advantage. PeerJ, 1, e175-. http://dx.doi.org/10.7717/peerj.175.

38.

Nicolas Robinson-García. (2016). Analyzing data citation practices using the data citation index. Journal of the Association for Information Science and Technology, 67(12), 2964-2975. http://dx.doi.org/10.1002/asi.23529.

39.

Selway, J. S.. (2011). The measurement of cross-cutting cleavages and other multidimensional cleavage structures. Political Analysis, 19(1), 48-65. http://dx.doi.org/10.1093/pan/mpq036.

40.

Joan Starr. (2011). isCitedBy: A Metadata Scheme for DataCite. D-Lib Magazine, 17(1/2), 9-. http://dx.doi.org/10.1045/january2011-starr.

41.

M. Stockhause. (2012). Quality assessment concept of the World Data Center for Climate and its application to CMIP5 data. Geoscientific Model Development, 5(4), 1023-1032. http://dx.doi.org/10.5194/gmd-5-1023-2012.

42.

Stodden, V. C.. (2010). Reproducible research: Addressing the need for data and code sharing in computational science. Computing in Science & Engineering, 12(5), 8-12.

43.

Torres-Salinas, D.. An introduction to the coverage of the Data Citation Index (Thomson-Reuters): Disciplines, document types and repositories.

44.

U.S. Geological Survey. (2016). Data citation. https://www2.usgs.gov/datamanagement/describe/citation.php.

45.

Uhlir, P. F.. (2012). For attribution—developing data attribution and citation practices and standards: Summary of an international workshop:National Academies Press.

정보관리학회지