바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
  • KCI

딥러닝 자동 분류 모델을 위한 공황장애 소셜미디어 코퍼스 구축 및 분석

Building and Analyzing Panic Disorder Social Media Corpus for Automatic Deep Learning Classification Model

정보관리학회지 / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2021, v.38 no.2, pp.153-172
https://doi.org/10.3743/KOSIM.2021.38.2.153
이수빈 (연세대학교 문헌정보학과)
김성덕 (연세대학교 문헌정보학과)
이주희 (연세대학교 문헌정보학과)
고영수 (연세대학교 문헌정보학과)
송민 (연세대학교)

초록

본 연구는 공황장애 말뭉치 구축과 분석을 통해 공황장애의 특성을 살펴보고 공황장애 경향 문헌을 분류할 수 있는 딥러닝 자동 분류 모델을 만들고자 하였다. 이를 위해 소셜미디어에서 수집한 공황장애 관련 문헌 5,884개를 정신 질환 진단 매뉴얼 기준으로 직접 주석 처리하여 공황장애 경향 문헌과 비 경향 문헌으로 분류하였다. 이 중 공황장애 경향 문헌에 나타난 어휘적 특성 및 어휘의 관계성을 분석하기 위해 TF-IDF값을 산출하고 단어 동시출현 분석을 실시하였다. 공황장애의 특성 및 증상 간의 관련성을 분석하기 위해 증상 빈도수와 주석 처리된 증상 번호 간의 동시출현 빈도수를 산출하였다. 또한, 구축한 말뭉치를 활용하여 딥러닝 자동 분류 모델 학습 및 성능 평가를 하였다. 이를 위하여 최신 딥러닝 언어 모델 BERT 중 세 가지 모델을 활용하였고 이 중 KcBERT가 가장 우수한 성능을 보였다. 본 연구는 공황장애 관련 증상을 겪는 사람들의 조기 진단 및 치료를 돕고 소셜미디어 말뭉치를 활용한 정신 질환 연구의 영역을 확장하고자 시도한 점에서 의의가 있다.

keywords
공황장애, 소셜미디어, TF-IDF, 단어 동시출현, 딥러닝, panic disorder, social media, TF-IDF, word co-occurrence, deep-learning

Abstract

This study is to create a deep learning based classification model to examine the characteristics of panic disorder and to classify the panic disorder tendency literature by the panic disorder corpus constructed for the present study. For this purpose, 5,884 documents of the panic disorder corpus collected from social media were directly annotated based on the mental disease diagnosis manual and were classified into panic disorder-prone and non-panic-disorder documents. Then, TF-IDF scores were calculated and word co-occurrence analysis was performed to analyze the lexical characteristics of the corpus. In addition, the co-occurrence between the symptom frequency measurement and the annotated symptom was calculated to analyze the characteristics of panic disorder symptoms and the relationship between symptoms. We also conducted the performance evaluation for a deep learning based classification model. Three pre-trained models, BERT multi-lingual, KoBERT, and KcBERT, were adopted for classification model, and KcBERT showed the best performance among them. This study demonstrated that it can help early diagnosis and treatment of people suffering from related symptoms by examining the characteristics of panic disorder and expand the field of mental illness research to social media.

keywords
공황장애, 소셜미디어, TF-IDF, 단어 동시출현, 딥러닝, panic disorder, social media, TF-IDF, word co-occurrence, deep-learning
투고일Submission Date
2021-05-17
수정일Revised Date
2021-06-03
게재확정일Accepted Date
2021-06-15

정보관리학회지