ISSN : 1013-0799
학문의 구조, 특성, 하위 분야 등을 계량적으로 규명하는 지적구조 분석 연구가 최근 급격히 증가하는 추세이다. 지적구조 분석 연구를 수행하기 위하여 전통적으로 사용되는 분석기법은 서지결합분석, 동시인용분석, 단어동시출현분석, 저자서지결합분석 등이다. 이 연구의 목적은 키워드서지결합분석(KBCA, Keyword Bibliographic Coupling Analysis)을 새로운 지적구조 분석 방식으로 제안하고자 한다. 키워드서지결합분석 기법은 저자서지결합분석의 변형으로 저자 대신에 키워드를 표지로 하여 키워드가 공유한 참고문헌의 수를 두 키워드의 주제적 결합 정도로 산정한다. 제안된 키워드서지결합분석 기법을 사용하여 Web of Science에서 검색된 ‘Open Data’ 분야의 1,366건의 논문집합을 대상으로 분석하였다. 1,366건의 논문집합에서 추출된 7회 이상 출현한 63종의 키워드를 오픈데이터 분야의 핵심 키워드로 선정하였다. 63종의 핵심 키워드를 대상으로 키워드서지결합분석 기법으로 제시된 지적구조는 열린정부와 오픈사이언스라는 주된 영역과 10개의 소주제로 규명되었다. 이에 반해 단어동시출현분석의 지적구조 네트워크는 전체 구성과 세부 영역 구조 규명에 있어 미진한 것으로 나타났다. 이러한 결과는 키워드서지결합분석이 키워드 간의 서지결합도를 사용하여 키워드 간의 관계를 풍부하게 측정하기 때문이라고 볼 수 있다.
Intellectual structure analysis, which quantitatively identifies the structure, characteristics, and sub-domains of fields, has rapidly increased in recent years. Analysis techniques traditionally used to conduct intellectual structure analysis research include bibliographic coupling analysis, co-citation analysis, co-occurrence analysis, and author bibliographic coupling analysis. This study proposes a novel intellectual structure analysis method, Keyword Bibliographic Coupling Analysis (KBCA). The Keyword Bibliographic Coupling Analysis (KBCA) is a variation of the author bibliographic coupling analysis, which targets keywords instead of authors. It calculates the number of references shared by two keywords to the degree of coupling between the two keywords. A set of 1,366 articles in the field of ‘Open Data’ searched in the Web of Science were collected using the proposed KBCA technique. A total of 63 keywords that appeared more than 7 times, extracted from 1,366 article sets, were selected as core keywords in the open data field. The intellectual structure presented by the KBCA technique with 63 key keywords identified the main areas of open government and open science and 10 sub-areas. On the other hand, the intellectual structure network of co-occurrence word analysis was found to be insufficient in the overall structure and detailed domain structure. This result can be considered because the KBCA sufficiently measures the relationship between keywords using the degree of bibliographic coupling.