바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1013-0799
  • E-ISSN2586-2073
  • KCI

트위터에서의 COVID-19와 관련된 반시민성 주제 탐색: 혐오 대상 및 키워드 분석

Investigating Topics of Incivility Related to COVID-19 on Twitter: Analysis of Targets and Keywords of Hate Speech

정보관리학회지 / Journal of the Korean Society for Information Management, (P)1013-0799; (E)2586-2073
2022, v.39 no.1, pp.331-350
https://doi.org/10.3743/KOSIM.2022.39.1.331
김규리 (성균관대학교 문헌정보학과 석사과정)
오찬희 (성균관대학교 문헌정보학과 석사과정)
주영준 (연세대학교 문헌정보학과)

초록

본 연구는 코로나바이러스감염증-19 (이하 코로나19)로 인해 생겨난 코로나19 반시민성 주제와 코로나19 혐오 정서를 파악하기 위해 소셜 미디어 중 하나인 트위터의 코로나19 관련 게시물을 분석하였다. 2019년 12월 1일부터 2021년 8월 31일까지 21개월 동안 작성된 코로나19 관련 혐오 대상별(지역, 공공시설 혐오, 특정 인구 집단 혐오, 종교 혐오) 게시물 수집 및 전처리를 진행하여 총 63,802개의 게시물을 분석하였다. 혐오 대상별 빈도 분석, 다이나믹 토픽 모델링, 키워드 동시 출현 네트워크 분석 기법을 통하여 혐오 대상별 반시민성 주제와 혐오 키워드를 파악하였다. 첫째, 빈도 분석 결과, 지역, 공공시설 혐오는 상대적으로 증가하는 추세를 보이고 특정 인구 집단과 종교 혐오는 상대적으로 감소하는 추세를 확인할 수 있었다. 둘째, 다이나믹 토픽 모델링 분석 결과, 지역, 공공시설 혐오는 ‘대구, 경북지방 혐오’, ‘지역 간 혐오’, ‘공공시설 혐오’로 나타났고, 특정 인구 집단 혐오는 ‘중국 혐오’, ‘바이러스 전파자’, ‘실외(야외)활동 제재’로 나타났으며, 종교 혐오는 ‘신천지’, ‘기독교’, ‘종교 내 감염’, ‘방역 의무 거부’, ‘확진자 동선 비난’으로 나타났다. 셋째, 키워드 동시 출현 네트워크 분석 결과, 지역, 공공시설 혐오(코로나, 대구, 확진자, 신천지, 경북, 지역), 특정 인구 집단 혐오(코로나바이러스, 우한폐렴, 우한, 중국, 중국인, 사람, 입국, 금지), 종교 혐오(신천지, 코로나, 교회, 대구, 확진자, 감염) 등을 핵심 키워드로 확인할 수 있었다. 본 연구는 소셜 미디어를 활용한 국내 코로나19 혐오 대상 및 키워드 파악을 통해 코로나19 관련한 대중의 반시민성 여론을 파악하고자 하였다. 특히 기존의 선행연구에서 시도하지 않았던 주제인 코로나19 관련 혐오에 데이터 마이닝 기법을 이용하여 소셜 미디어에서 표출하는 대중의 반시민성 주제와 혐오 정서 탐색은 대중들의 여론을 파악하는 것이 의의가 있다. 더불어 본 연구 결과는 포스트 코로나 시대를 대비하는 문화적 소통 방안의 제도 및 정책 수립 기여를 위한 기본 자료에 기초할 수 있다는 점에서 실질적 함의를 시사한다.

keywords
코로나바이러스감염증-19, 반시민성, 소셜 미디어, 트위터, 빈도분석, 다이나믹 토픽 모델링, 키워드 동시 출현 네트워크, COVID-19, incivility, social media, Twitter, frequency analysis, dynamic topic modelling, keyword co-occurrence network analysis

Abstract

This study aims to understand topics of incivility related to COVID-19 from analyzing Twitter posts including COVID-19-related hate speech. To achieve the goal, a total of 63,802 tweets that were created between December 1st, 2019, and August 31st, 2021, covering three targets of hate speech including region and public facilities, groups of people, and religion were analyzed. Frequency analysis, dynamic topic modeling, and keyword co-occurrence network analysis were used to explore topics and keywords. 1) Results of frequency analysis revealed that hate against regions and public facilities showed a relatively increasing trend while hate against specific groups of people and religion showed a relatively decreasing trend. 2) Results of dynamic topic modeling analysis showed keywords of each of the three targets of hate speech. Keywords of the region and public facilities included “Daegu, Gyeongbuk local hate”, “interregional hate”, and “public facility hate”; groups of people included “China hate”, “virus spreaders”, and “outdoor activity sanctions”; and religion included “Shincheonji”, “Christianity”, “religious infection”, “refusal of quarantine”, and “places visited by confirmed cases”. 3) Similarly, results of keyword co-occurrence network analysis revealed keywords of three targets: region and public facilities (Corona, Daegu, confirmed cases, Shincheonji, Gyeongbuk, region); specific groups of people (Coronavirus, Wuhan pneumonia, Wuhan, China, Chinese, People, Entry, Banned); and religion (Corona, Church, Daegu, confirmed cases, infection). This study attempted to grasp the public’s anti-citizenship public opinion related to COVID-19 by identifying domestic COVID-19 hate targets and keywords using social media. In particular, it is meaningful to grasp public opinion on incivility topics and hate emotions expressed on social media using data mining techniques for hate-related to COVID-19, which has not been attempted in previous studies. In addition, the results of this study suggest practical implications in that they can be based on basic data for contributing to the establishment of systems and policies for cultural communication measures in preparation for the post-COVID-19 era.

keywords
코로나바이러스감염증-19, 반시민성, 소셜 미디어, 트위터, 빈도분석, 다이나믹 토픽 모델링, 키워드 동시 출현 네트워크, COVID-19, incivility, social media, Twitter, frequency analysis, dynamic topic modelling, keyword co-occurrence network analysis
투고일Submission Date
2022-02-22
수정일Revised Date
2022-03-07
게재확정일Accepted Date
2022-03-14

정보관리학회지