ISSN : 1013-0799
본 연구는 ‘우수한 성능의 메타데이터 속성 유사도 기반의 학술 문헌추천시스템’을 제안하는 데에 목적을 두고 있다. 본 연구에서는 정보조직에서 다루는 메타데이터의 활용과 계량정보학에서 다루고 있는 동시인용, 저자-서지결합법, 동시출현 빈도, 코사인 유사도의 개념을 활용한 문헌정보학 기반의 학술 문헌 추천기법을 제안하고자 하였다. 실험을 위해 수집한 ‘불평등’, ‘격차’ 관련 총 9,643개의 논문 메타데이터를 정제하여 코사인 유사도를 활용한 저자, 키워드, 제목 속성 간의 상대적 좌표 수치를 도출하였고, 성능 좋은 가중치 조건 및 차원의 수를 선정하기 위해 실험을 수행하였다. 실험 결과를 제시하여 이용자의 평가를 거쳤으며, 이를 이용해 기준노드와 추천조합 특성 분석 및 컨조인트 분석, 결과 비교 분석을 수행하여 연구질문 중심의 논의를 수행하였다. 그 결과 전반적으로는 저자 관련 속성을 제한 조합 혹은 제목 관련 속성만 사용하는 경우 성능이 뛰어난 것으로 나타났다. 본 연구에서 제시한 기법을 활용하고 광범위한 표본의 확보를 이룬다면, 향후 정보서비스의 문헌 추천 분야뿐 아니라 사회의 다양한 분야에 대한 추천기법 성능 향상에 도움을 줄 수 있을 것이다.
The purpose of this study is to propose a scholarly paper recommendation system based on metadata attribute similarity with excellent performance. This study suggests a scholarly paper recommendation method that combines techniques from two sub-fields of Library and Information Science, namely metadata use in Information Organization and co-citation analysis, author bibliographic coupling, co-occurrence frequency, and cosine similarity in Bibliometrics. To conduct experiments, a total of 9,643 paper metadata related to “inequality” and “divide” were collected and refined to derive relative coordinate values between author, keyword, and title attributes using cosine similarity. The study then conducted experiments to select weight conditions and dimension numbers that resulted in a good performance. The results were presented and evaluated by users, and based on this, the study conducted discussions centered on the research questions through reference node and recommendation combination characteristic analysis, conjoint analysis, and results from comparative analysis. Overall, the study showed that the performance was excellent when author-related attributes were used alone or in combination with title-related attributes. If the technique proposed in this study is utilized and a wide range of samples are secured, it could help improve the performance of recommendation techniques not only in the field of literature recommendation in information services but also in various other fields in society.